--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - wwwtwwwt/fineaudio-NewsPolitics metrics: - wer model-index: - name: Whisper Tiny En - NewsPolitics - Social Commentary results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fineaudio-NewsPolitics-Social Commentary type: wwwtwwwt/fineaudio-NewsPolitics args: 'config: en, split: test' metrics: - name: Wer type: wer value: 52.65511043774045 --- # Whisper Tiny En - NewsPolitics - Social Commentary This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fineaudio-NewsPolitics-Social Commentary dataset. It achieves the following results on the evaluation set: - Loss: 0.9274 - Wer: 52.6551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.8927 | 0.5705 | 1000 | 1.0172 | 59.8874 | | 0.702 | 1.1409 | 2000 | 0.9510 | 56.5795 | | 0.6797 | 1.7114 | 3000 | 0.9338 | 55.1387 | | 0.6021 | 2.2818 | 4000 | 0.9274 | 52.6551 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0