### Finetuned on annual report sentence pair This marianMT has been further finetuned on annual report sentence pairs ## Test out at huggingface spaces! https://huggingface.co/spaces/wolfrage89/finance_domain_translation_marianMT ## Sample colab notebook https://colab.research.google.com/drive/1H57vwiah7n1JXvXYMqJ8dklrIuU6Cljb?usp=sharing ## How to use ```python !pip install transformers !pip install sentencepiece from transformers import MarianMTModel, MarianTokenizer tokenizer = MarianTokenizer.from_pretrained("wolfrage89/annual_report_translation_id_en") model = MarianMTModel.from_pretrained("wolfrage89/annual_report_translation_id_en") #tokenizing bahasa sentence bahasa_sentence = "Interpretasi ini merupakan interpretasi atas PSAK 46: Pajak Penghasilan yang bertujuan untuk mengklarifikasi dan memberikan panduan dalam merefleksikan ketidakpastian perlakuan pajak penghasilan dalam laporan keuangan." tokenized_bahasa_sentence = tokenizer([bahasa_sentence], return_tensors='pt', max_length=104, truncation=True) #feeding tokenized sentence into model, the max_legnth have been set to 104 as the model was trained mostly on sentences with this length translated_tokens = model.generate(**tokenized_bahasa_sentence, max_length=104)[0] ## decoding the tokens to get english sentence english_sentence = tokenizer.decode(translated_tokens, skip_special_tokens=True) print(english_sentence) # This interpretation is an interpretation of PSAK 46: Income Tax that aims to clarify and provide guidance in reflecting the uncertainty of income tax treatments in the financial statements. ``` ### opus-mt-id-en (original model) * source languages: id * target languages: en * OPUS readme: [id-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-en/README.md)