winddude commited on
Commit
5783de2
·
1 Parent(s): 5219865

init commit

Browse files
Files changed (3) hide show
  1. README.md +61 -3
  2. adapter_config.json +19 -0
  3. adapter_model.bin +3 -0
README.md CHANGED
@@ -1,3 +1,61 @@
1
- ---
2
- license: gpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # wizardLM-LlaMA-LoRA-7B
2
+
3
+ A LoRA trained on the WizardLM dataset, with a LlaMA 7B as the basemodel.
4
+
5
+ ## Instruction example
6
+
7
+ It was trained with the alpaca-short template, without any inputs, so prompt as follows:
8
+
9
+ ```
10
+ ### Instruction:
11
+ Write a poem about the transformers Python library.
12
+ Mention the word "large language models" in that poem.
13
+ ### Response:
14
+ I'm not sure if this is what you meant, but here goes!
15
+ The Transformers are large language models
16
+ that help us make sense of text.
17
+ They take our sentences and turn them into vectors,
18
+ which can be used to find similarities between texts.
19
+ We use these for things like search engines or spam filters;
20
+ they also have uses in machine learning too.
21
+ ```
22
+
23
+ ## Trained with the following params
24
+
25
+ ```
26
+ base_model: /root/alpaca-lora/llama-7b-hf
27
+ data_path: victor123/evol_instruct_70k
28
+ output_dir: /loras/wizardLM-lama-lora
29
+ batch_size: 64
30
+ micro_batch_size: 8
31
+ num_epochs: 3
32
+ learning_rate: 2e-05
33
+ cutoff_len: 2048
34
+ val_set_size: 2000
35
+ lora_r: 16
36
+ lora_alpha: 16
37
+ lora_dropout: 0.05
38
+ lora_target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj']
39
+ train_on_inputs: True
40
+ add_eos_token: False
41
+ group_by_length: True
42
+ wandb_project:
43
+ wandb_run_name:
44
+ wandb_watch:
45
+ wandb_log_model:
46
+ resume_from_checkpoint: False
47
+ prompt template: alpaca_short
48
+ ```
49
+
50
+ ## Training Details
51
+
52
+ - Trained with https://github.com/tloen/alpaca-lora. Note: ince the `victor123/evol_instruct_70k` dataset only contains instruction and output, comment out the line `data_point["input"],` around line 151 in `alpaca-lora\finetune.py`
53
+ - Trained on [RunPod](https://runpod.io?ref=qgrfwczf
54
+ ) community cloud with 1x A100 80GB vram (Note: less GPU was needed)
55
+ - Took 14:47:39 to train 3 epochs
56
+ - Cost around $37 to train
57
+
58
+ ## Evaluation
59
+
60
+ - No evaluation has been done on this model. If someone wants to share I would happily pull.
61
+ - Empirically it looks promising for complex instruction following.
adapter_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "base_model_name_or_path": "/root/alpaca-lora/llama-7b-hf",
3
+ "bias": "none",
4
+ "fan_in_fan_out": false,
5
+ "inference_mode": true,
6
+ "init_lora_weights": true,
7
+ "lora_alpha": 16,
8
+ "lora_dropout": 0.05,
9
+ "modules_to_save": null,
10
+ "peft_type": "LORA",
11
+ "r": 16,
12
+ "target_modules": [
13
+ "q_proj",
14
+ "k_proj",
15
+ "v_proj",
16
+ "o_proj"
17
+ ],
18
+ "task_type": "CAUSAL_LM"
19
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5e1621f48d9ad8feb1d6d31050275f0aafd080c5c07153301fe2f48411f4406
3
+ size 443