--- library_name: peft license: apache-2.0 base_model: unsloth/tinyllama tags: - axolotl - generated_from_trainer model-index: - name: dc78143d-f969-489f-b5a3-33391bf2b1e6 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/tinyllama batch_size: 8 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - fced0da711a452c4_train_data.json ds_type: json format: custom path: /workspace/input_data/fced0da711a452c4_train_data.json type: field_instruction: question_body field_output: question_title format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' early_stopping_patience: 3 eval_steps: 50 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/dc78143d-f969-489f-b5a3-33391bf2b1e6 hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lora_alpha: 256 lora_dropout: 0.1 lora_r: 128 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 1 model_type: AutoModelForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 50 sequence_len: 2048 tokenizer_type: LlamaTokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ```

# dc78143d-f969-489f-b5a3-33391bf2b1e6 This model is a fine-tuned version of [unsloth/tinyllama](https://huggingface.co/unsloth/tinyllama) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 335 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0019 | 1 | 3.1687 | | 1.4763 | 0.0931 | 50 | 1.4450 | | 1.3149 | 0.1862 | 100 | 1.3312 | | 1.3618 | 0.2793 | 150 | 1.3268 | | 1.396 | 0.3724 | 200 | 1.3320 | | 1.4143 | 0.4655 | 250 | 1.3690 | | 1.3715 | 0.5587 | 300 | 1.3469 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1