--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: a7f83208-aa47-4ecd-80e6-f21bda70bb90 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B batch_size: 8 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - 44664facd5408a4c_train_data.json ds_type: json format: custom path: /workspace/input_data/44664facd5408a4c_train_data.json type: field_input: choices field_instruction: full_prompt field_output: example format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' evals_per_epoch: 1 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/a7f83208-aa47-4ecd-80e6-f21bda70bb90 hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lora_alpha: 256 lora_dropout: 0.1 lora_r: 128 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 1 model_type: AutoModelForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false saves_per_epoch: 2 sequence_len: 2048 tokenizer_type: Qwen2TokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ```

# a7f83208-aa47-4ecd-80e6-f21bda70bb90 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 24 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.025 | 1 | 0.9385 | | 0.0292 | 1.0 | 40 | 0.0043 | | 0.0148 | 2.0 | 80 | 0.0332 | | 0.1015 | 3.0 | 120 | 0.0044 | | 0.0002 | 4.0 | 160 | 0.0001 | | 0.0 | 5.0 | 200 | 0.0000 | | 0.0 | 6.0 | 240 | 0.0000 | | 0.0 | 7.0 | 280 | 0.0000 | | 0.0 | 8.0 | 320 | 0.0000 | | 0.0 | 9.0 | 360 | 0.0000 | | 0.0 | 10.0 | 400 | 0.0000 | | 0.0 | 11.0 | 440 | 0.0000 | | 0.0 | 12.0 | 480 | 0.0000 | | 0.0 | 13.0 | 520 | 0.0000 | | 0.0 | 14.0 | 560 | 0.0000 | | 0.0 | 15.0 | 600 | 0.0000 | | 0.0 | 16.0 | 640 | 0.0000 | | 0.0 | 17.0 | 680 | 0.0000 | | 0.0 | 18.0 | 720 | 0.0000 | | 0.0 | 19.0 | 760 | 0.0000 | | 0.0 | 20.0 | 800 | 0.0000 | | 0.0 | 21.0 | 840 | 0.0000 | | 0.0 | 22.0 | 880 | 0.0000 | | 0.0 | 23.0 | 920 | 0.0000 | | 0.0 | 24.0 | 960 | 0.0000 | | 0.0 | 25.0 | 1000 | 0.0000 | | 0.0 | 26.0 | 1040 | 0.0000 | | 0.0 | 27.0 | 1080 | 0.0000 | | 0.0 | 28.0 | 1120 | 0.0000 | | 0.0 | 29.0 | 1160 | 0.0000 | | 0.0 | 30.0 | 1200 | 0.0000 | | 0.0 | 31.0 | 1240 | 0.0000 | | 0.0 | 32.0 | 1280 | 0.0000 | | 0.0 | 33.0 | 1320 | 0.0000 | | 0.0 | 34.0 | 1360 | 0.0000 | | 0.0 | 35.0 | 1400 | 0.0000 | | 0.0 | 36.0 | 1440 | 0.0000 | | 0.0 | 37.0 | 1480 | 0.0000 | | 0.0 | 38.0 | 1520 | 0.0000 | | 0.0 | 39.0 | 1560 | 0.0000 | | 0.0 | 40.0 | 1600 | 0.0000 | | 0.0 | 41.0 | 1640 | 0.0000 | | 0.0 | 42.0 | 1680 | 0.0000 | | 0.0 | 43.0 | 1720 | 0.0000 | | 0.0 | 44.0 | 1760 | 0.0000 | | 0.0 | 45.0 | 1800 | 0.0000 | | 0.0 | 46.0 | 1840 | 0.0000 | | 0.0 | 47.0 | 1880 | 0.0000 | | 0.0 | 48.0 | 1920 | 0.0000 | | 0.0 | 49.0 | 1960 | 0.0000 | | 0.0 | 50.0 | 2000 | 0.0000 | | 0.0 | 51.0 | 2040 | 0.0000 | | 0.0 | 52.0 | 2080 | 0.0000 | | 0.0 | 53.0 | 2120 | 0.0000 | | 0.0 | 54.0 | 2160 | 0.0000 | | 0.0 | 55.0 | 2200 | 0.0000 | | 0.0 | 56.0 | 2240 | 0.0000 | | 0.0 | 57.0 | 2280 | 0.0000 | | 0.0 | 58.0 | 2320 | 0.0000 | | 0.0 | 59.0 | 2360 | 0.0000 | | 0.0 | 60.0 | 2400 | 0.0000 | | 0.0 | 61.0 | 2440 | 0.0000 | | 0.0 | 62.0 | 2480 | 0.0000 | | 0.0 | 63.0 | 2520 | 0.0000 | | 0.0 | 64.0 | 2560 | 0.0000 | | 0.0 | 65.0 | 2600 | 0.0000 | | 0.0 | 66.0 | 2640 | 0.0000 | | 0.0 | 67.0 | 2680 | 0.0000 | | 0.0 | 68.0 | 2720 | 0.0000 | | 0.0 | 69.0 | 2760 | 0.0000 | | 0.0 | 70.0 | 2800 | 0.0000 | | 0.0 | 71.0 | 2840 | 0.0000 | | 0.0 | 72.0 | 2880 | 0.0000 | | 0.0 | 73.0 | 2920 | 0.0000 | | 0.0 | 74.0 | 2960 | 0.0000 | | 0.0 | 75.0 | 3000 | 0.0000 | | 0.0 | 76.0 | 3040 | 0.0000 | | 0.0 | 77.0 | 3080 | 0.0000 | | 0.0 | 78.0 | 3120 | 0.0000 | | 0.0 | 79.0 | 3160 | 0.0000 | | 0.0 | 80.0 | 3200 | 0.0000 | | 0.0 | 81.0 | 3240 | 0.0000 | | 0.0 | 82.0 | 3280 | 0.0000 | | 0.0 | 83.0 | 3320 | 0.0000 | | 0.0 | 84.0 | 3360 | 0.0000 | | 0.0 | 85.0 | 3400 | 0.0000 | | 0.0 | 86.0 | 3440 | 0.0000 | | 0.0 | 87.0 | 3480 | 0.0000 | | 0.0 | 88.0 | 3520 | 0.0000 | | 0.0 | 89.0 | 3560 | 0.0000 | | 0.0 | 90.0 | 3600 | 0.0000 | | 0.0 | 91.0 | 3640 | 0.0000 | | 0.0 | 92.0 | 3680 | 0.0000 | | 0.0 | 93.0 | 3720 | 0.0000 | | 0.0 | 94.0 | 3760 | 0.0000 | | 0.0 | 95.0 | 3800 | 0.0000 | | 0.0 | 96.0 | 3840 | 0.0000 | | 0.0 | 97.0 | 3880 | 0.0000 | | 0.0 | 98.0 | 3920 | 0.0000 | | 0.0 | 99.0 | 3960 | 0.0000 | | 0.0 | 100.0 | 4000 | 0.0000 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1