--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-1.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 0eda4152-e58c-4e24-b30e-71e456fb3b24 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-1.5B-Instruct batch_size: 8 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - 19637e66dc3ec99a_train_data.json ds_type: json format: custom path: /workspace/input_data/19637e66dc3ec99a_train_data.json type: field_instruction: drugName field_output: review format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' early_stopping_patience: 3 eval_steps: 50 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/0eda4152-e58c-4e24-b30e-71e456fb3b24 hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lora_alpha: 256 lora_dropout: 0.1 lora_r: 128 lora_target_linear: true lr_scheduler: cosine micro_batch_size: 1 model_type: AutoModelForCausalLM num_epochs: 100 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 50 sequence_len: 2048 tokenizer_type: Qwen2TokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ```

# 0eda4152-e58c-4e24-b30e-71e456fb3b24 This model is a fine-tuned version of [Qwen/Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.4073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 15107 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0000 | 1 | 3.1066 | | 3.0737 | 0.0021 | 50 | 3.0943 | | 3.2193 | 0.0041 | 100 | 3.0057 | | 2.9091 | 0.0062 | 150 | 2.8280 | | 2.8518 | 0.0083 | 200 | 2.6914 | | 2.7049 | 0.0103 | 250 | 2.5964 | | 2.5077 | 0.0124 | 300 | 2.5624 | | 2.5767 | 0.0145 | 350 | 2.5434 | | 2.4882 | 0.0165 | 400 | 2.5289 | | 2.5446 | 0.0186 | 450 | 2.5212 | | 2.5746 | 0.0207 | 500 | 2.5130 | | 2.552 | 0.0228 | 550 | 2.5067 | | 2.5758 | 0.0248 | 600 | 2.5002 | | 2.5321 | 0.0269 | 650 | 2.4943 | | 2.5634 | 0.0290 | 700 | 2.4918 | | 2.4308 | 0.0310 | 750 | 2.4876 | | 2.5713 | 0.0331 | 800 | 2.4831 | | 2.3993 | 0.0352 | 850 | 2.4820 | | 2.4609 | 0.0372 | 900 | 2.4766 | | 2.4981 | 0.0393 | 950 | 2.4738 | | 2.5594 | 0.0414 | 1000 | 2.4705 | | 2.5697 | 0.0434 | 1050 | 2.4702 | | 2.5192 | 0.0455 | 1100 | 2.4677 | | 2.5156 | 0.0476 | 1150 | 2.4649 | | 2.5819 | 0.0496 | 1200 | 2.4638 | | 2.5288 | 0.0517 | 1250 | 2.4595 | | 2.4565 | 0.0538 | 1300 | 2.4585 | | 2.4487 | 0.0558 | 1350 | 2.4557 | | 2.5059 | 0.0579 | 1400 | 2.4531 | | 2.4266 | 0.0600 | 1450 | 2.4537 | | 2.4951 | 0.0621 | 1500 | 2.4544 | | 2.4606 | 0.0641 | 1550 | 2.4467 | | 2.3836 | 0.0662 | 1600 | 2.4453 | | 2.4641 | 0.0683 | 1650 | 2.4461 | | 2.4473 | 0.0703 | 1700 | 2.4432 | | 2.3924 | 0.0724 | 1750 | 2.4418 | | 2.4956 | 0.0745 | 1800 | 2.4415 | | 2.5065 | 0.0765 | 1850 | 2.4377 | | 2.57 | 0.0786 | 1900 | 2.4399 | | 2.4057 | 0.0807 | 1950 | 2.4357 | | 2.4555 | 0.0827 | 2000 | 2.4350 | | 2.5578 | 0.0848 | 2050 | 2.4339 | | 2.4314 | 0.0869 | 2100 | 2.4340 | | 2.4294 | 0.0889 | 2150 | 2.4317 | | 2.4092 | 0.0910 | 2200 | 2.4324 | | 2.5031 | 0.0931 | 2250 | 2.4289 | | 2.3989 | 0.0952 | 2300 | 2.4276 | | 2.4823 | 0.0972 | 2350 | 2.4259 | | 2.4884 | 0.0993 | 2400 | 2.4242 | | 2.3923 | 0.1014 | 2450 | 2.4255 | | 2.4107 | 0.1034 | 2500 | 2.4272 | | 2.4565 | 0.1055 | 2550 | 2.4235 | | 2.3695 | 0.1076 | 2600 | 2.4228 | | 2.4399 | 0.1096 | 2650 | 2.4229 | | 2.4686 | 0.1117 | 2700 | 2.4197 | | 2.4199 | 0.1138 | 2750 | 2.4173 | | 2.3615 | 0.1158 | 2800 | 2.4185 | | 2.4635 | 0.1179 | 2850 | 2.4190 | | 2.4492 | 0.1200 | 2900 | 2.4157 | | 2.4444 | 0.1220 | 2950 | 2.4166 | | 2.4057 | 0.1241 | 3000 | 2.4142 | | 2.3822 | 0.1262 | 3050 | 2.4137 | | 2.3831 | 0.1282 | 3100 | 2.4122 | | 2.376 | 0.1303 | 3150 | 2.4140 | | 2.4278 | 0.1324 | 3200 | 2.4109 | | 2.3976 | 0.1345 | 3250 | 2.4121 | | 2.3883 | 0.1365 | 3300 | 2.4099 | | 2.4337 | 0.1386 | 3350 | 2.4095 | | 2.3364 | 0.1407 | 3400 | 2.4066 | | 2.3768 | 0.1427 | 3450 | 2.4065 | | 2.4395 | 0.1448 | 3500 | 2.4081 | | 2.2957 | 0.1469 | 3550 | 2.4069 | | 2.396 | 0.1489 | 3600 | 2.4058 | | 2.4117 | 0.1510 | 3650 | 2.4072 | | 2.3691 | 0.1531 | 3700 | 2.4091 | | 2.3721 | 0.1551 | 3750 | 2.4073 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1