--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: w2v-bert-2.0-arabic-colab-CV16.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: test args: default metrics: - name: Wer type: wer value: 0.9174774774774774 --- # w2v-bert-2.0-arabic-colab-CV16.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2104 - Wer: 0.9175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2194 | 1.92 | 300 | 0.2943 | 0.2984 | | 0.9727 | 3.83 | 600 | 1.2104 | 0.9175 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2