weqweasdas commited on
Commit
f3a61bf
·
verified ·
1 Parent(s): 23ca6e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -159
README.md CHANGED
@@ -1,199 +1,103 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
 
 
 
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
 
 
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
172
 
173
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ {}
 
3
  ---
4
 
5
+ # Reward Model Overview
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
+ The reward model is trained from the base model [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it).
10
 
11
+ The training script is available at https://github.com/WeiXiongUST/RLHF-Reward-Modeling .
12
 
13
  ## Model Details
14
 
15
+ If you have any question with this reward model and also any question about reward modeling, feel free to drop me an email with [email protected]. I would be happy to chat!
16
 
17
+ ### Dataset preprocessing
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ The model is trained on a mixture of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it).
22
 
23
+ - [HH-RLHF](https://huggingface.co/datasets/Anthropic/hh-rlhf)
24
+ - [SHP](https://huggingface.co/datasets/stanfordnlp/SHP)
25
+ - [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback)
26
+ - [Capybara](argilla/distilabel-capybara-dpo-7k-binarized)
27
+ - [HelpSteer](https://huggingface.co/datasets/nvidia/HelpSteer)
28
+ - [Orca](argilla/distilabel-intel-orca-dpo-pairs)
29
 
30
+ Difference between this mixture and that of
31
 
32
+ - SHP: we only use the samples with score ratio > 2, for each prompt, we take 5 comparison at most, leading to 109526;
33
+ - Ultrafeedback: similar to UltraFeedback-Binarized, we use the fine-grained score instead of the overall one to rank samples. Meanwhile, for each prompt, we take all possible 6 pairs of comparisons. Finally, we delete the selected pairs with equal scores, leading to 267416.
34
+ - HelpSteer: we use the mean of helpfulness and correctness to rank samples. Meanwhile, we take all possible 6 pairs of comparisons. Finally, we delete the selected pairs with equal scores, leading to 21576;
35
 
 
36
 
37
+ ### Training
38
 
39
+ We train the model for one epoch with a learning rate of 5e-6, batch size 512, cosine learning rate decay with a warmup ratio 0.03. You can see my training script here: https://github.com/WeiXiongUST/RAFT-Reward-Ranked-Finetuning/blob/main/reward_modeling.py , which is modified from the TRL package.
40
 
 
41
 
 
42
 
 
 
 
 
 
43
 
44
+ ## Uses
45
 
46
+ ```python
47
+ from transformers import AutoTokenizer, pipeline
48
+ rm_tokenizer = AutoTokenizer.from_pretrained("weqweasdas/RM-Mistral-7B")
49
+ device = 0 # accelerator.device
50
+ rm_pipe = pipeline(
51
+ "sentiment-analysis",
52
+ model="weqweasdas/RM-Mistral-7B",
53
+ #device="auto",
54
+ device=device,
55
+ tokenizer=rm_tokenizer,
56
+ model_kwargs={"torch_dtype": torch.bfloat16}
57
+ )
58
+
59
+ pipe_kwargs = {
60
+ "return_all_scores": True,
61
+ "function_to_apply": "none",
62
+ "batch_size": 1
63
+ }
64
+
65
+ chat = [
66
+ {"role": "user", "content": "Hello, how are you?"},
67
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
68
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
69
+ ]
70
+
71
+ test_texts = [tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False).replace(tokenizer.bos_token, "")]
72
+ pipe_outputs = rm_pipe(test_texts, **pipe_kwargs)
73
+ rewards = [output[0]["score"] for output in pipe_outputs]
74
+ ```
75
 
76
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
77
 
 
78
 
 
79
 
80
+ ## Results
81
 
82
+ To be evaluted by hte benchmark.
83
 
 
84
 
 
85
 
86
+ ## Reference
87
 
88
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
89
 
90
+ To be added. The reward model may be readily used for rejection sampling finetuning (
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
 
92
 
93
+ ```
94
+ @article{dong2023raft,
95
+ title={Raft: Reward ranked finetuning for generative foundation model alignment},
96
+ author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong},
97
+ journal={arXiv preprint arXiv:2304.06767},
98
+ year={2023}
99
+ }
100
+ ```
101
 
 
102
 
 
103