--- language: - en - zh license: mit datasets: - wenbopan/Chinese-dpo-pairs - Intel/orca_dpo_pairs - argilla/ultrafeedback-binarized-preferences-cleaned - jondurbin/truthy-dpo-v0.1 pipeline_tag: text-generation model-index: - name: Faro-Yi-34B-DPO results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 73.55 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 65.79 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 55.85 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 92.2 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 79.78 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 71.0 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 85.12 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 68.88 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 72.24 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wenbopan/Faro-Yi-34B-DPO name: Open Portuguese LLM Leaderboard --- # Faro-Yi-9B-DPO This is the DPO version of [wenbopan/Faro-Yi-34B](https://huggingface.co/wenbopan/Faro-Yi-34B). Compared to Faro-Yi-34B and [Yi-34B-200K](https://huggingface.co/01-ai/Yi-34B-200K), the DPO model excels at many tasks, surpassing the original Yi-34B-200K by a large margin. ## How to Use Faro-Yi-34B-DPO uses the chatml template and performs well in both short and long contexts. ```python import io import requests from PyPDF2 import PdfReader from vllm import LLM, SamplingParams llm = LLM(model="wenbopan/Faro-Yi-34B-DPO", kv_cache_dtype="fp8_e5m2", max_model_len=100000) pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content) document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages question = f"{document}\n\nAccording to the paper, what is the parameter count of GPT-4?" messages = [ {"role": "user", "content": question} ] # 83K tokens prompt = llm.get_tokenizer().apply_chat_template(messages, add_generation_prompt=True, tokenize=False) output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500)) print(output[0].outputs[0].text) # Yi-9B-200K: 175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ... # Faro-Yi-9B: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ... ```
Or With Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-34B-DPO', device_map="cuda") tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-34B-DPO') messages = [ {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."}, {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."} ] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device) generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.5) response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Aye, matey! The Pythagorean theorem is a nautical rule that helps us find the length of the third side of a triangle. ... ```
# Open Portuguese LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/wenbopan/Faro-Yi-34B-DPO) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|---------| |Average |**73.82**| |ENEM Challenge (No Images)| 73.55| |BLUEX (No Images) | 65.79| |OAB Exams | 55.85| |Assin2 RTE | 92.20| |Assin2 STS | 79.78| |FaQuAD NLI | 71| |HateBR Binary | 85.12| |PT Hate Speech Binary | 68.88| |tweetSentBR | 72.24|