MarikoKato commited on
Commit
3569fa1
·
verified ·
1 Parent(s): b6a5789

initial commit

Browse files
LICENSE-MODEL.txt ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ DEEPSEEK LICENSE AGREEMENT
2
+
3
+ Version 1.0, 23 October 2023
4
+
5
+ Copyright (c) 2023 DeepSeek
6
+
7
+ Section I: PREAMBLE
8
+
9
+ Large generative models are being widely adopted and used, and have the potential to transform the way individuals conceive and benefit from AI or ML technologies.
10
+
11
+ Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations.
12
+
13
+ In short, this license strives for both the open and responsible downstream use of the accompanying model. When it comes to the open character, we took inspiration from open source permissive licenses regarding the grant of IP rights. Referring to the downstream responsible use, we added use-based restrictions not permitting the use of the model in very specific scenarios, in order for the licensor to be able to enforce the license in case potential misuses of the Model may occur. At the same time, we strive to promote open and responsible research on generative models for content generation.
14
+
15
+ Even though downstream derivative versions of the model could be released under different licensing terms, the latter will always have to include - at minimum - the same use-based restrictions as the ones in the original license (this license). We believe in the intersection between open and responsible AI development; thus, this agreement aims to strike a balance between both in order to enable responsible open-science in the field of AI.
16
+
17
+ This License governs the use of the model (and its derivatives) and is informed by the model card associated with the model.
18
+
19
+ NOW THEREFORE, You and DeepSeek agree as follows:
20
+
21
+ 1. Definitions
22
+ "License" means the terms and conditions for use, reproduction, and Distribution as defined in this document.
23
+ "Data" means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
24
+ "Output" means the results of operating a Model as embodied in informational content resulting therefrom.
25
+ "Model" means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material.
26
+ "Derivatives of the Model" means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including - but not limited to - distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model.
27
+ "Complementary Material" means the accompanying source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any.
28
+ "Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
29
+ "DeepSeek" (or "we") means Beijing DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd., Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. and/or any of their affiliates.
30
+ "You" (or "Your") means an individual or Legal Entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application - e.g. chatbot, translator, etc.
31
+ "Third Parties" means individuals or legal entities that are not under common control with DeepSeek or You.
32
+
33
+ Section II: INTELLECTUAL PROPERTY RIGHTS
34
+
35
+ Both copyright and patent grants apply to the Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of the Model are subject to additional terms as described in Section III.
36
+
37
+ 2. Grant of Copyright License. Subject to the terms and conditions of this License, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Complementary Material, the Model, and Derivatives of the Model.
38
+
39
+ 3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, DeepSeek hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and the Complementary Material, where such license applies only to those patent claims licensable by DeepSeek that are necessarily infringed by its contribution(s). If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model and/or Complementary Material constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or works shall terminate as of the date such litigation is asserted or filed.
40
+
41
+
42
+ Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
43
+
44
+ 4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions:
45
+ a. Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. This provision does not apply to the use of Complementary Material.
46
+ b. You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License;
47
+ c. You must cause any modified files to carry prominent notices stating that You changed the files;
48
+ d. You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model.
49
+ e. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions - respecting paragraph 4.a. – for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License.
50
+
51
+ 5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model and the Derivatives of the Model for the specified restricted uses. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. Use may include creating any content with, finetuning, updating, running, training, evaluating and/or reparametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph (paragraph 5).
52
+
53
+ 6. The Output You Generate. Except as set forth herein, DeepSeek claims no rights in the Output You generate using the Model. You are accountable for the Output you generate and its subsequent uses. No use of the output can contravene any provision as stated in the License.
54
+
55
+ Section IV: OTHER PROVISIONS
56
+
57
+ 7. Updates and Runtime Restrictions. To the maximum extent permitted by law, DeepSeek reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License.
58
+
59
+ 8. Trademarks and related. Nothing in this License permits You to make use of DeepSeek’ trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by DeepSeek.
60
+
61
+ 9. Personal information, IP rights and related. This Model may contain personal information and works with IP rights. You commit to complying with applicable laws and regulations in the handling of personal information and the use of such works. Please note that DeepSeek's license granted to you to use the Model does not imply that you have obtained a legitimate basis for processing the related information or works. As an independent personal information processor and IP rights user, you need to ensure full compliance with relevant legal and regulatory requirements when handling personal information and works with IP rights that may be contained in the Model, and are willing to assume solely any risks and consequences that may arise from that.
62
+
63
+ 10. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, DeepSeek provides the Model and the Complementary Material on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivatives of the Model, and the Complementary Material and assume any risks associated with Your exercise of permissions under this License.
64
+
65
+ 11. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall DeepSeek be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if DeepSeek has been advised of the possibility of such damages.
66
+
67
+ 12. Accepting Warranty or Additional Liability. While redistributing the Model, Derivatives of the Model and the Complementary Material thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of DeepSeek, and only if You agree to indemnify, defend, and hold DeepSeek harmless for any liability incurred by, or claims asserted against, DeepSeek by reason of your accepting any such warranty or additional liability.
68
+
69
+ 13. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
70
+
71
+ 14. Governing Law and Jurisdiction. This agreement will be governed and construed under PRC laws without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this agreement. The courts located in the domicile of Hangzhou DeepSeek Artificial Intelligence Fundamental Technology Research Co., Ltd. shall have exclusive jurisdiction of any dispute arising out of this agreement.
72
+
73
+ END OF TERMS AND CONDITIONS
74
+
75
+ Attachment A
76
+
77
+ Use Restrictions
78
+
79
+ You agree not to use the Model or Derivatives of the Model:
80
+
81
+ - In any way that violates any applicable national or international law or regulation or infringes upon the lawful rights and interests of any third party;
82
+ - For military use in any way;
83
+ - For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
84
+ - To generate or disseminate verifiably false information and/or content with the purpose of harming others;
85
+ - To generate or disseminate inappropriate content subject to applicable regulatory requirements;
86
+ - To generate or disseminate personal identifiable information without due authorization or for unreasonable use;
87
+ - To defame, disparage or otherwise harass others;
88
+ - For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation;
89
+ - For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics;
90
+ - To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
91
+ - For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories.
README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: deepseek
4
+ license_link: https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/LICENSE-MODEL
5
+ ---
6
+
7
+ weblab-geniac4最終提出用
8
+
9
+
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<MASK>": 59528
3
+ }
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "JINIAC/JINIAC-5B-sft_configuration-3_prod-checkpoint-500-dpo_merge_20240526_final",
3
+ "architectures": [
4
+ "DeepseekForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "JINIAC/JINIAC-5B-sft_configuration-3_prod-checkpoint-500-dpo_merge_20240526_final--configuration_deepseek.DeepseekConfig",
10
+ "AutoModel": "JINIAC/JINIAC-5B-sft_configuration-3_prod-checkpoint-500-dpo_merge_20240526_final--modeling_deepseek.DeepseekModel",
11
+ "AutoModelForCausalLM": "JINIAC/JINIAC-5B-sft_configuration-3_prod-checkpoint-500-dpo_merge_20240526_final--modeling_deepseek.DeepseekForCausalLM"
12
+ },
13
+ "aux_loss_alpha": 0.001,
14
+ "bos_token_id": 1,
15
+ "eos_token_id": 2,
16
+ "first_k_dense_replace": 1,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 2048,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 10944,
21
+ "max_position_embeddings": 16384,
22
+ "model_type": "deepseek",
23
+ "moe_intermediate_size": 1408,
24
+ "moe_layer_freq": 1,
25
+ "n_routed_experts": 64,
26
+ "n_shared_experts": 2,
27
+ "norm_topk_prob": false,
28
+ "num_attention_heads": 16,
29
+ "num_experts_per_tok": 4,
30
+ "num_hidden_layers": 9,
31
+ "num_key_value_heads": 16,
32
+ "pretraining_tp": 1,
33
+ "rms_norm_eps": 1e-06,
34
+ "rope_scaling": null,
35
+ "rope_theta": 10000,
36
+ "scoring_func": "softmax",
37
+ "seq_aux": true,
38
+ "tie_word_embeddings": false,
39
+ "torch_dtype": "bfloat16",
40
+ "transformers_version": "4.39.3",
41
+ "use_cache": true,
42
+ "vocab_size": 59529
43
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekConfig(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekModel`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-7B.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekModel`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ num_experts_per_tok (`int`, *optional*, defaults to None):
36
+ Number of selected experts, None means dense model.
37
+ moe_layer_freq (`int`, *optional*, defaults to 1):
38
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
39
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
40
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
41
+ \--k dense layers--/
42
+ norm_topk_prob (`bool`, *optional*, defaults to False):
43
+ Whether to normalize the weights of the routed experts.
44
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
45
+ Method of computing expert weights.
46
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
47
+ Auxiliary loss weight coefficient.
48
+ seq_aux = (`bool`, *optional*, defaults to True):
49
+ Whether to compute the auxiliary loss for each individual sample.
50
+ num_key_value_heads (`int`, *optional*):
51
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
52
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
53
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
54
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
55
+ by meanpooling all the original heads within that group. For more details checkout [this
56
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
57
+ `num_attention_heads`.
58
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
+ The non-linear activation function (function or string) in the decoder.
60
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
61
+ The maximum sequence length that this model might ever be used with.
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ pad_token_id (`int`, *optional*):
70
+ Padding token id.
71
+ bos_token_id (`int`, *optional*, defaults to 1):
72
+ Beginning of stream token id.
73
+ eos_token_id (`int`, *optional*, defaults to 2):
74
+ End of stream token id.
75
+ pretraining_tp (`int`, *optional*, defaults to 1):
76
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
77
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
78
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
79
+ issue](https://github.com/pytorch/pytorch/issues/76232).
80
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
81
+ Whether to tie weight embeddings
82
+ rope_theta (`float`, *optional*, defaults to 10000.0):
83
+ The base period of the RoPE embeddings.
84
+ rope_scaling (`Dict`, *optional*):
85
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
86
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
87
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
88
+ `max_position_embeddings` to the expected new maximum.
89
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
90
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
91
+ attention_dropout (`float`, *optional*, defaults to 0.0):
92
+ The dropout ratio for the attention probabilities.
93
+
94
+ ```python
95
+ >>> from transformers import DeepseekModel, DeepseekConfig
96
+
97
+ >>> # Initializing a Deepseek deepseek-7b style configuration
98
+ >>> configuration = DeepseekConfig()
99
+
100
+ >>> # Accessing the model configuration
101
+ >>> configuration = model.config
102
+ ```"""
103
+
104
+ model_type = "deepseek"
105
+ keys_to_ignore_at_inference = ["past_key_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ vocab_size=102400,
110
+ hidden_size=4096,
111
+ intermediate_size=11008,
112
+ moe_intermediate_size = 1407,
113
+ num_hidden_layers=30,
114
+ num_attention_heads=32,
115
+ num_key_value_heads=32,
116
+ n_shared_experts = None,
117
+ n_routed_experts = None,
118
+ num_experts_per_tok = None,
119
+ moe_layer_freq = 1,
120
+ first_k_dense_replace = 0,
121
+ norm_topk_prob = False,
122
+ scoring_func = 'softmax',
123
+ aux_loss_alpha = 0.001,
124
+ seq_aux = True,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=100000,
132
+ eos_token_id=100001,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.max_position_embeddings = max_position_embeddings
143
+ self.hidden_size = hidden_size
144
+ self.intermediate_size = intermediate_size
145
+ self.moe_intermediate_size = moe_intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+ self.n_shared_experts = n_shared_experts
149
+ self.n_routed_experts = n_routed_experts
150
+ self.num_experts_per_tok = num_experts_per_tok
151
+ self.moe_layer_freq = moe_layer_freq
152
+ self.first_k_dense_replace = first_k_dense_replace
153
+ self.norm_topk_prob = norm_topk_prob
154
+ self.scoring_func = scoring_func
155
+ self.aux_loss_alpha = aux_loss_alpha
156
+ self.seq_aux = seq_aux
157
+ # for backward compatibility
158
+ if num_key_value_heads is None:
159
+ num_key_value_heads = num_attention_heads
160
+
161
+ self.num_key_value_heads = num_key_value_heads
162
+ self.hidden_act = hidden_act
163
+ self.initializer_range = initializer_range
164
+ self.rms_norm_eps = rms_norm_eps
165
+ self.pretraining_tp = pretraining_tp
166
+ self.use_cache = use_cache
167
+ self.rope_theta = rope_theta
168
+ self.rope_scaling = rope_scaling
169
+ self._rope_scaling_validation()
170
+ self.attention_bias = attention_bias
171
+ self.attention_dropout = attention_dropout
172
+
173
+ super().__init__(
174
+ pad_token_id=pad_token_id,
175
+ bos_token_id=bos_token_id,
176
+ eos_token_id=eos_token_id,
177
+ tie_word_embeddings=tie_word_embeddings,
178
+ **kwargs,
179
+ )
180
+
181
+ def _rope_scaling_validation(self):
182
+ """
183
+ Validate the `rope_scaling` configuration.
184
+ """
185
+ if self.rope_scaling is None:
186
+ return
187
+
188
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
189
+ raise ValueError(
190
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
191
+ f"got {self.rope_scaling}"
192
+ )
193
+ rope_scaling_type = self.rope_scaling.get("type", None)
194
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
195
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
196
+ raise ValueError(
197
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
198
+ )
199
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
200
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.39.3"
6
+ }
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a28845385fb7bc199fbbc102dfc088aa8f2520e5b99fe5fbb5eab592198f8dde
3
+ size 4999254336
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09a97dd395282e69362bd159cb7d172abc692844e673ccdc2fc55cf27bcfc5f2
3
+ size 4818616248
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a783ad53320460ffb69100004d162d0e5e67d30de633d2ee45d40482fd49ae2
3
+ size 243830912
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_deepseek.py ADDED
@@ -0,0 +1,1560 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.import_utils import is_torch_fx_available
51
+ from .configuration_deepseek import DeepseekConfig
52
+
53
+
54
+ if is_flash_attn_2_available():
55
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
56
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
57
+
58
+
59
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
60
+ # It means that the function will not be traced through and simply appear as a node in the graph.
61
+ if is_torch_fx_available():
62
+ if not is_torch_greater_or_equal_than_1_13:
63
+ import torch.fx
64
+
65
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
66
+
67
+
68
+ logger = logging.get_logger(__name__)
69
+
70
+ _CONFIG_FOR_DOC = "DeepseekConfig"
71
+
72
+
73
+ def _get_unpad_data(attention_mask):
74
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
75
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
76
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
77
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
78
+ return (
79
+ indices,
80
+ cu_seqlens,
81
+ max_seqlen_in_batch,
82
+ )
83
+
84
+
85
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
86
+ warnings.warn(
87
+ "Calling `transformers.models.Deepseek.modeling_Deepseek._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
88
+ )
89
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
90
+
91
+
92
+ def _make_causal_mask(
93
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
94
+ ):
95
+ warnings.warn(
96
+ "Calling `transformers.models.Deepseek.modeling_Deepseek._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.Deepseek.modeling_Deepseek.AttentionMaskConverter._make_causal_mask"
97
+ )
98
+ return AttentionMaskConverter._make_causal_mask(
99
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
100
+ )
101
+
102
+
103
+ class DeepseekRMSNorm(nn.Module):
104
+ def __init__(self, hidden_size, eps=1e-6):
105
+ """
106
+ DeepseekRMSNorm is equivalent to T5LayerNorm
107
+ """
108
+ super().__init__()
109
+ self.weight = nn.Parameter(torch.ones(hidden_size))
110
+ self.variance_epsilon = eps
111
+
112
+ def forward(self, hidden_states):
113
+ input_dtype = hidden_states.dtype
114
+ hidden_states = hidden_states.to(torch.float32)
115
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
116
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
117
+ return self.weight * hidden_states.to(input_dtype)
118
+
119
+
120
+ ALL_LAYERNORM_LAYERS.append(DeepseekRMSNorm)
121
+
122
+
123
+ class DeepseekRotaryEmbedding(nn.Module):
124
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
125
+ super().__init__()
126
+
127
+ self.dim = dim
128
+ self.max_position_embeddings = max_position_embeddings
129
+ self.base = base
130
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
131
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
132
+
133
+ # Build here to make `torch.jit.trace` work.
134
+ self._set_cos_sin_cache(
135
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
136
+ )
137
+ self.max_seq_len_cached = None
138
+
139
+
140
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
141
+ self.max_seq_len_cached = seq_len
142
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
143
+
144
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
145
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
146
+ emb = torch.cat((freqs, freqs), dim=-1)
147
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
148
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
149
+
150
+ def forward(self, x, seq_len=None):
151
+ # x: [bs, num_attention_heads, seq_len, head_size]
152
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
153
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
154
+
155
+ return (
156
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
157
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
158
+ )
159
+
160
+
161
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->Deepseek
162
+ class DeepseekLinearScalingRotaryEmbedding(DeepseekRotaryEmbedding):
163
+ """DeepseekRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
164
+
165
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
166
+ self.scaling_factor = scaling_factor
167
+ super().__init__(dim, max_position_embeddings, base, device)
168
+
169
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
170
+ self.max_seq_len_cached = seq_len
171
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
172
+ t = t / self.scaling_factor
173
+
174
+ freqs = torch.outer(t, self.inv_freq)
175
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
176
+ emb = torch.cat((freqs, freqs), dim=-1)
177
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
178
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
179
+
180
+
181
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->Deepseek
182
+ class DeepseekDynamicNTKScalingRotaryEmbedding(DeepseekRotaryEmbedding):
183
+ """DeepseekRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
184
+
185
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
186
+ self.scaling_factor = scaling_factor
187
+ super().__init__(dim, max_position_embeddings, base, device)
188
+
189
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
190
+ self.max_seq_len_cached = seq_len
191
+
192
+ if seq_len > self.max_position_embeddings:
193
+ base = self.base * (
194
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
195
+ ) ** (self.dim / (self.dim - 2))
196
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
197
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
198
+
199
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
200
+
201
+ freqs = torch.outer(t, self.inv_freq)
202
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
203
+ emb = torch.cat((freqs, freqs), dim=-1)
204
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
205
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
206
+
207
+
208
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
209
+ def rotate_half(x):
210
+ """Rotates half the hidden dims of the input."""
211
+ x1 = x[..., : x.shape[-1] // 2]
212
+ x2 = x[..., x.shape[-1] // 2 :]
213
+ return torch.cat((-x2, x1), dim=-1)
214
+
215
+
216
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
217
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
218
+ """Applies Rotary Position Embedding to the query and key tensors.
219
+
220
+ Args:
221
+ q (`torch.Tensor`): The query tensor.
222
+ k (`torch.Tensor`): The key tensor.
223
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
224
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
225
+ position_ids (`torch.Tensor`):
226
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
227
+ used to pass offsetted position ids when working with a KV-cache.
228
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
229
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
230
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
231
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
232
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
233
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
234
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
235
+ Returns:
236
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
237
+ """
238
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
239
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
240
+ q_embed = (q * cos) + (rotate_half(q) * sin)
241
+ k_embed = (k * cos) + (rotate_half(k) * sin)
242
+ return q_embed, k_embed
243
+
244
+
245
+ class DeepseekMLP(nn.Module):
246
+ def __init__(self, config, hidden_size = None, intermediate_size = None):
247
+ super().__init__()
248
+ self.config = config
249
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
250
+ self.intermediate_size = config.intermediate_size if intermediate_size is None else intermediate_size
251
+
252
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
253
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
254
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
255
+ self.act_fn = ACT2FN[config.hidden_act]
256
+
257
+ def forward(self, x):
258
+ if self.config.pretraining_tp > 1:
259
+ slice = self.intermediate_size // self.config.pretraining_tp
260
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
261
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
262
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
263
+
264
+ gate_proj = torch.cat(
265
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
266
+ )
267
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
268
+
269
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
270
+ down_proj = [
271
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
272
+ ]
273
+ down_proj = sum(down_proj)
274
+ else:
275
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
276
+
277
+ return down_proj
278
+
279
+
280
+ class MoEGate(nn.Module):
281
+ def __init__(self, config):
282
+ super().__init__()
283
+ self.config = config
284
+ self.top_k = config.num_experts_per_tok
285
+ self.n_routed_experts = config.n_routed_experts
286
+
287
+ self.scoring_func = config.scoring_func
288
+ self.alpha = config.aux_loss_alpha
289
+ self.seq_aux = config.seq_aux
290
+
291
+ # topk selection algorithm
292
+ self.norm_topk_prob = config.norm_topk_prob
293
+ self.gating_dim = config.hidden_size
294
+ self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
295
+ self.reset_parameters()
296
+
297
+ def reset_parameters(self) -> None:
298
+ import torch.nn.init as init
299
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
300
+
301
+ def forward(self, hidden_states):
302
+ bsz, seq_len, h = hidden_states.shape
303
+ ### compute gating score
304
+ hidden_states = hidden_states.view(-1, h)
305
+ logits = F.linear(hidden_states, self.weight, None)
306
+ if self.scoring_func == 'softmax':
307
+ scores = logits.softmax(dim=-1)
308
+ else:
309
+ raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
310
+
311
+ ### select top-k experts
312
+ topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
313
+
314
+ ### norm gate to sum 1
315
+ if self.top_k > 1 and self.norm_topk_prob:
316
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
317
+ topk_weight = topk_weight / denominator
318
+
319
+ ### expert-level computation auxiliary loss
320
+ if self.training and self.alpha > 0.0:
321
+ scores_for_aux = scores
322
+ aux_topk = self.top_k
323
+ # always compute aux loss based on the naive greedy topk method
324
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
325
+ if self.seq_aux:
326
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
327
+ ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
328
+ ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(seq_len * aux_topk / self.n_routed_experts)
329
+ aux_loss = (ce * scores_for_seq_aux.mean(dim = 1)).sum(dim = 1).mean() * self.alpha
330
+ else:
331
+ mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
332
+ ce = mask_ce.float().mean(0)
333
+ Pi = scores_for_aux.mean(0)
334
+ fi = ce * self.n_routed_experts
335
+ aux_loss = (Pi * fi).sum() * self.alpha
336
+ else:
337
+ aux_loss = None
338
+ return topk_idx, topk_weight, aux_loss
339
+
340
+
341
+ class AddAuxiliaryLoss(torch.autograd.Function):
342
+ """
343
+ The trick function of adding auxiliary (aux) loss,
344
+ which includes the gradient of the aux loss during backpropagation.
345
+ """
346
+ @staticmethod
347
+ def forward(ctx, x, loss):
348
+ assert loss.numel() == 1
349
+ ctx.dtype = loss.dtype
350
+ ctx.required_aux_loss = loss.requires_grad
351
+ return x
352
+
353
+ @staticmethod
354
+ def backward(ctx, grad_output):
355
+ grad_loss = None
356
+ if ctx.required_aux_loss:
357
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
358
+ return grad_output, grad_loss
359
+
360
+
361
+ class DeepseekMoE(nn.Module):
362
+ """
363
+ A mixed expert module containing shared experts.
364
+ """
365
+ def __init__(self, config):
366
+ super().__init__()
367
+ self.config = config
368
+ self.num_experts_per_tok = config.num_experts_per_tok
369
+ self.experts = nn.ModuleList([DeepseekMLP(config, intermediate_size = config.moe_intermediate_size) for i in range(config.n_routed_experts)])
370
+ self.gate = MoEGate(config)
371
+ if config.n_shared_experts is not None:
372
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
373
+ self.shared_experts = DeepseekMLP(config=config, intermediate_size = intermediate_size)
374
+
375
+ def forward(self, hidden_states):
376
+ identity = hidden_states
377
+ orig_shape = hidden_states.shape
378
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
379
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
380
+ flat_topk_idx = topk_idx.view(-1)
381
+ if self.training:
382
+ hidden_states = hidden_states.repeat_interleave(self.num_experts_per_tok, dim=0)
383
+ y = torch.empty_like(hidden_states)
384
+ for i, expert in enumerate(self.experts):
385
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
386
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
387
+ y = y.view(*orig_shape)
388
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
389
+ else:
390
+ y = self.moe_infer(hidden_states, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
391
+ if self.config.n_shared_experts is not None:
392
+ y = y + self.shared_experts(identity)
393
+ return y
394
+
395
+ @torch.no_grad()
396
+ def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
397
+ expert_cache = torch.zeros_like(x)
398
+ idxs = flat_expert_indices.argsort()
399
+ tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
400
+ token_idxs = idxs // self.num_experts_per_tok
401
+ for i, end_idx in enumerate(tokens_per_expert):
402
+ start_idx = 0 if i == 0 else tokens_per_expert[i-1]
403
+ if start_idx == end_idx:
404
+ continue
405
+ expert = self.experts[i]
406
+ exp_token_idx = token_idxs[start_idx:end_idx]
407
+ expert_tokens = x[exp_token_idx]
408
+ expert_out = expert(expert_tokens)
409
+ expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
410
+ expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
411
+ return expert_cache
412
+
413
+
414
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
415
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
416
+ """
417
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
418
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
419
+ """
420
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
421
+ if n_rep == 1:
422
+ return hidden_states
423
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
424
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
425
+
426
+
427
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Deepseek
428
+ class DeepseekAttention(nn.Module):
429
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
430
+
431
+ def __init__(self, config: DeepseekConfig, layer_idx: Optional[int] = None):
432
+ super().__init__()
433
+ self.config = config
434
+ self.layer_idx = layer_idx
435
+ if layer_idx is None:
436
+ logger.warning_once(
437
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
438
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
439
+ "when creating this class."
440
+ )
441
+
442
+ self.attention_dropout = config.attention_dropout
443
+ self.hidden_size = config.hidden_size
444
+ self.num_heads = config.num_attention_heads
445
+ self.head_dim = self.hidden_size // self.num_heads
446
+ self.num_key_value_heads = config.num_key_value_heads
447
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
448
+ self.max_position_embeddings = config.max_position_embeddings
449
+ self.rope_theta = config.rope_theta
450
+ self.is_causal = True
451
+
452
+ if (self.head_dim * self.num_heads) != self.hidden_size:
453
+ raise ValueError(
454
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
455
+ f" and `num_heads`: {self.num_heads})."
456
+ )
457
+
458
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
459
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
460
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
461
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
462
+ self._init_rope()
463
+
464
+ def _init_rope(self):
465
+ if self.config.rope_scaling is None:
466
+ self.rotary_emb = DeepseekRotaryEmbedding(
467
+ self.head_dim,
468
+ max_position_embeddings=self.max_position_embeddings,
469
+ base=self.rope_theta,
470
+ )
471
+ else:
472
+ scaling_type = self.config.rope_scaling["type"]
473
+ scaling_factor = self.config.rope_scaling["factor"]
474
+ if scaling_type == "linear":
475
+ self.rotary_emb = DeepseekLinearScalingRotaryEmbedding(
476
+ self.head_dim,
477
+ max_position_embeddings=self.max_position_embeddings,
478
+ scaling_factor=scaling_factor,
479
+ base=self.rope_theta,
480
+ )
481
+ elif scaling_type == "dynamic":
482
+ self.rotary_emb = DeepseekDynamicNTKScalingRotaryEmbedding(
483
+ self.head_dim,
484
+ max_position_embeddings=self.max_position_embeddings,
485
+ scaling_factor=scaling_factor,
486
+ base=self.rope_theta,
487
+ )
488
+ else:
489
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
490
+
491
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
492
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
493
+
494
+ def forward(
495
+ self,
496
+ hidden_states: torch.Tensor,
497
+ attention_mask: Optional[torch.Tensor] = None,
498
+ position_ids: Optional[torch.LongTensor] = None,
499
+ past_key_value: Optional[Cache] = None,
500
+ output_attentions: bool = False,
501
+ use_cache: bool = False,
502
+ **kwargs,
503
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
504
+ if "padding_mask" in kwargs:
505
+ warnings.warn(
506
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
507
+ )
508
+
509
+ bsz, q_len, _ = hidden_states.size()
510
+
511
+ if self.config.pretraining_tp > 1:
512
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
513
+ query_slices = self.q_proj.weight.split(
514
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
515
+ )
516
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
517
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
518
+
519
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
520
+ query_states = torch.cat(query_states, dim=-1)
521
+
522
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
523
+ key_states = torch.cat(key_states, dim=-1)
524
+
525
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
526
+ value_states = torch.cat(value_states, dim=-1)
527
+
528
+ else:
529
+ query_states = self.q_proj(hidden_states)
530
+ key_states = self.k_proj(hidden_states)
531
+ value_states = self.v_proj(hidden_states)
532
+
533
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
534
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
535
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
536
+
537
+ kv_seq_len = key_states.shape[-2]
538
+ if past_key_value is not None:
539
+ if self.layer_idx is None:
540
+ raise ValueError(
541
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
542
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
543
+ "with a layer index."
544
+ )
545
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
546
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
547
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
548
+
549
+ if past_key_value is not None:
550
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
551
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
552
+
553
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
554
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
555
+
556
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
557
+
558
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
559
+ raise ValueError(
560
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
561
+ f" {attn_weights.size()}"
562
+ )
563
+
564
+ if attention_mask is not None:
565
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
566
+ raise ValueError(
567
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
568
+ )
569
+ attn_weights = attn_weights + attention_mask
570
+
571
+ # upcast attention to fp32
572
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
573
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
574
+ attn_output = torch.matmul(attn_weights, value_states)
575
+
576
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
577
+ raise ValueError(
578
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
579
+ f" {attn_output.size()}"
580
+ )
581
+
582
+ attn_output = attn_output.transpose(1, 2).contiguous()
583
+
584
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
585
+
586
+ if self.config.pretraining_tp > 1:
587
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
588
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
589
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
590
+ else:
591
+ attn_output = self.o_proj(attn_output)
592
+
593
+ if not output_attentions:
594
+ attn_weights = None
595
+
596
+ return attn_output, attn_weights, past_key_value
597
+
598
+
599
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->Deepseek
600
+ class DeepseekFlashAttention2(DeepseekAttention):
601
+ """
602
+ Deepseek flash attention module. This module inherits from `DeepseekAttention` as the weights of the module stays
603
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
604
+ flash attention and deal with padding tokens in case the input contains any of them.
605
+ """
606
+
607
+ def __init__(self, *args, **kwargs):
608
+ super().__init__(*args, **kwargs)
609
+
610
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
611
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
612
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
613
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
614
+
615
+ def forward(
616
+ self,
617
+ hidden_states: torch.Tensor,
618
+ attention_mask: Optional[torch.LongTensor] = None,
619
+ position_ids: Optional[torch.LongTensor] = None,
620
+ past_key_value: Optional[Cache] = None,
621
+ output_attentions: bool = False,
622
+ use_cache: bool = False,
623
+ **kwargs,
624
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
625
+ # DeepseekFlashAttention2 attention does not support output_attentions
626
+ if "padding_mask" in kwargs:
627
+ warnings.warn(
628
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
629
+ )
630
+
631
+ # overwrite attention_mask with padding_mask
632
+ attention_mask = kwargs.pop("padding_mask")
633
+
634
+ output_attentions = False
635
+
636
+ bsz, q_len, _ = hidden_states.size()
637
+
638
+ query_states = self.q_proj(hidden_states)
639
+ key_states = self.k_proj(hidden_states)
640
+ value_states = self.v_proj(hidden_states)
641
+
642
+ # Flash attention requires the input to have the shape
643
+ # batch_size x seq_length x head_dim x hidden_dim
644
+ # therefore we just need to keep the original shape
645
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
646
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
647
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
648
+
649
+ kv_seq_len = key_states.shape[-2]
650
+ if past_key_value is not None:
651
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
652
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
653
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
654
+
655
+ if past_key_value is not None:
656
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
657
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
658
+
659
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
660
+ # to be able to avoid many of these transpose/reshape/view.
661
+ query_states = query_states.transpose(1, 2)
662
+ key_states = key_states.transpose(1, 2)
663
+ value_states = value_states.transpose(1, 2)
664
+
665
+ dropout_rate = self.attention_dropout if self.training else 0.0
666
+
667
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
668
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
669
+ # cast them back in the correct dtype just to be sure everything works as expected.
670
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
671
+ # in fp32. (DeepseekRMSNorm handles it correctly)
672
+
673
+ input_dtype = query_states.dtype
674
+ if input_dtype == torch.float32:
675
+ # Handle the case where the model is quantized
676
+ if hasattr(self.config, "_pre_quantization_dtype"):
677
+ target_dtype = self.config._pre_quantization_dtype
678
+ elif torch.is_autocast_enabled():
679
+ target_dtype = torch.get_autocast_gpu_dtype()
680
+ else:
681
+ target_dtype = self.q_proj.weight.dtype
682
+
683
+ logger.warning_once(
684
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
685
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
686
+ f" {target_dtype}."
687
+ )
688
+
689
+ query_states = query_states.to(target_dtype)
690
+ key_states = key_states.to(target_dtype)
691
+ value_states = value_states.to(target_dtype)
692
+
693
+ attn_output = self._flash_attention_forward(
694
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
695
+ )
696
+
697
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
698
+ attn_output = self.o_proj(attn_output)
699
+
700
+ if not output_attentions:
701
+ attn_weights = None
702
+
703
+ return attn_output, attn_weights, past_key_value
704
+
705
+ def _flash_attention_forward(
706
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
707
+ ):
708
+ """
709
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
710
+ first unpad the input, then computes the attention scores and pad the final attention scores.
711
+
712
+ Args:
713
+ query_states (`torch.Tensor`):
714
+ Input query states to be passed to Flash Attention API
715
+ key_states (`torch.Tensor`):
716
+ Input key states to be passed to Flash Attention API
717
+ value_states (`torch.Tensor`):
718
+ Input value states to be passed to Flash Attention API
719
+ attention_mask (`torch.Tensor`):
720
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
721
+ position of padding tokens and 1 for the position of non-padding tokens.
722
+ dropout (`int`, *optional*):
723
+ Attention dropout
724
+ softmax_scale (`float`, *optional*):
725
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
726
+ """
727
+ if not self._flash_attn_uses_top_left_mask:
728
+ causal = self.is_causal
729
+ else:
730
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekFlashAttention2 __init__.
731
+ causal = self.is_causal and query_length != 1
732
+
733
+ # Contains at least one padding token in the sequence
734
+ if attention_mask is not None:
735
+ batch_size = query_states.shape[0]
736
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
737
+ query_states, key_states, value_states, attention_mask, query_length
738
+ )
739
+
740
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
741
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
742
+
743
+ attn_output_unpad = flash_attn_varlen_func(
744
+ query_states,
745
+ key_states,
746
+ value_states,
747
+ cu_seqlens_q=cu_seqlens_q,
748
+ cu_seqlens_k=cu_seqlens_k,
749
+ max_seqlen_q=max_seqlen_in_batch_q,
750
+ max_seqlen_k=max_seqlen_in_batch_k,
751
+ dropout_p=dropout,
752
+ softmax_scale=softmax_scale,
753
+ causal=causal,
754
+ )
755
+
756
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
757
+ else:
758
+ attn_output = flash_attn_func(
759
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
760
+ )
761
+
762
+ return attn_output
763
+
764
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
765
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
766
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
767
+
768
+ key_layer = index_first_axis(
769
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
770
+ )
771
+ value_layer = index_first_axis(
772
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
773
+ )
774
+ if query_length == kv_seq_len:
775
+ query_layer = index_first_axis(
776
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
777
+ )
778
+ cu_seqlens_q = cu_seqlens_k
779
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
780
+ indices_q = indices_k
781
+ elif query_length == 1:
782
+ max_seqlen_in_batch_q = 1
783
+ cu_seqlens_q = torch.arange(
784
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
785
+ ) # There is a memcpy here, that is very bad.
786
+ indices_q = cu_seqlens_q[:-1]
787
+ query_layer = query_layer.squeeze(1)
788
+ else:
789
+ # The -q_len: slice assumes left padding.
790
+ attention_mask = attention_mask[:, -query_length:]
791
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
792
+
793
+ return (
794
+ query_layer,
795
+ key_layer,
796
+ value_layer,
797
+ indices_q,
798
+ (cu_seqlens_q, cu_seqlens_k),
799
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
800
+ )
801
+
802
+
803
+ # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Deepseek
804
+ class DeepseekSdpaAttention(DeepseekAttention):
805
+ """
806
+ Deepseek attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
807
+ `DeepseekAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
808
+ SDPA API.
809
+ """
810
+
811
+ # Adapted from DeepseekAttention.forward
812
+ def forward(
813
+ self,
814
+ hidden_states: torch.Tensor,
815
+ attention_mask: Optional[torch.Tensor] = None,
816
+ position_ids: Optional[torch.LongTensor] = None,
817
+ past_key_value: Optional[Cache] = None,
818
+ output_attentions: bool = False,
819
+ use_cache: bool = False,
820
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
821
+ if output_attentions:
822
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
823
+ logger.warning_once(
824
+ "DeepseekModel is using DeepseekSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
825
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
826
+ )
827
+ return super().forward(
828
+ hidden_states=hidden_states,
829
+ attention_mask=attention_mask,
830
+ position_ids=position_ids,
831
+ past_key_value=past_key_value,
832
+ output_attentions=output_attentions,
833
+ use_cache=use_cache,
834
+ )
835
+
836
+ bsz, q_len, _ = hidden_states.size()
837
+
838
+ query_states = self.q_proj(hidden_states)
839
+ key_states = self.k_proj(hidden_states)
840
+ value_states = self.v_proj(hidden_states)
841
+
842
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
843
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
844
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
845
+
846
+ kv_seq_len = key_states.shape[-2]
847
+ if past_key_value is not None:
848
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
849
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
850
+
851
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
852
+
853
+ if past_key_value is not None:
854
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
855
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
856
+
857
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
858
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
859
+
860
+ if attention_mask is not None:
861
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
862
+ raise ValueError(
863
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
864
+ )
865
+
866
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
867
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
868
+ if query_states.device.type == "cuda" and attention_mask is not None:
869
+ query_states = query_states.contiguous()
870
+ key_states = key_states.contiguous()
871
+ value_states = value_states.contiguous()
872
+
873
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
874
+ query_states,
875
+ key_states,
876
+ value_states,
877
+ attn_mask=attention_mask,
878
+ dropout_p=self.attention_dropout if self.training else 0.0,
879
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
880
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
881
+ )
882
+
883
+ attn_output = attn_output.transpose(1, 2).contiguous()
884
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
885
+
886
+ attn_output = self.o_proj(attn_output)
887
+
888
+ return attn_output, None, past_key_value
889
+
890
+
891
+ Deepseek_ATTENTION_CLASSES = {
892
+ "eager": DeepseekAttention,
893
+ "flash_attention_2": DeepseekFlashAttention2,
894
+ "sdpa": DeepseekSdpaAttention,
895
+ }
896
+
897
+
898
+ class DeepseekDecoderLayer(nn.Module):
899
+ def __init__(self, config: DeepseekConfig, layer_idx: int):
900
+ super().__init__()
901
+ self.hidden_size = config.hidden_size
902
+
903
+ self.self_attn = Deepseek_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
904
+
905
+ self.mlp = DeepseekMoE(config) if (config.n_routed_experts is not None and \
906
+ layer_idx >= config.first_k_dense_replace and layer_idx % config.moe_layer_freq == 0) \
907
+ else DeepseekMLP(config)
908
+ self.input_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
909
+ self.post_attention_layernorm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
910
+
911
+ def forward(
912
+ self,
913
+ hidden_states: torch.Tensor,
914
+ attention_mask: Optional[torch.Tensor] = None,
915
+ position_ids: Optional[torch.LongTensor] = None,
916
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
917
+ output_attentions: Optional[bool] = False,
918
+ use_cache: Optional[bool] = False,
919
+ **kwargs,
920
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
921
+ """
922
+ Args:
923
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
924
+ attention_mask (`torch.FloatTensor`, *optional*):
925
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
926
+ query_sequence_length, key_sequence_length)` if default attention is used.
927
+ output_attentions (`bool`, *optional*):
928
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
929
+ returned tensors for more detail.
930
+ use_cache (`bool`, *optional*):
931
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
932
+ (see `past_key_values`).
933
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
934
+ """
935
+ if "padding_mask" in kwargs:
936
+ warnings.warn(
937
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
938
+ )
939
+ residual = hidden_states
940
+
941
+ hidden_states = self.input_layernorm(hidden_states)
942
+
943
+ # Self Attention
944
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
945
+ hidden_states=hidden_states,
946
+ attention_mask=attention_mask,
947
+ position_ids=position_ids,
948
+ past_key_value=past_key_value,
949
+ output_attentions=output_attentions,
950
+ use_cache=use_cache,
951
+ **kwargs,
952
+ )
953
+ hidden_states = residual + hidden_states
954
+
955
+ # Fully Connected
956
+ residual = hidden_states
957
+ hidden_states = self.post_attention_layernorm(hidden_states)
958
+ hidden_states = self.mlp(hidden_states)
959
+ hidden_states = residual + hidden_states
960
+
961
+ outputs = (hidden_states,)
962
+
963
+ if output_attentions:
964
+ outputs += (self_attn_weights,)
965
+
966
+ if use_cache:
967
+ outputs += (present_key_value,)
968
+
969
+ return outputs
970
+
971
+
972
+ Deepseek_START_DOCSTRING = r"""
973
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
974
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
975
+ etc.)
976
+
977
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
978
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
979
+ and behavior.
980
+
981
+ Parameters:
982
+ config ([`DeepseekConfig`]):
983
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
984
+ load the weights associated with the model, only the configuration. Check out the
985
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
986
+ """
987
+
988
+
989
+ @add_start_docstrings(
990
+ "The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
991
+ Deepseek_START_DOCSTRING,
992
+ )
993
+ class DeepseekPreTrainedModel(PreTrainedModel):
994
+ config_class = DeepseekConfig
995
+ base_model_prefix = "model"
996
+ supports_gradient_checkpointing = True
997
+ _no_split_modules = ["DeepseekDecoderLayer"]
998
+ _skip_keys_device_placement = "past_key_values"
999
+ _supports_flash_attn_2 = True
1000
+ _supports_sdpa = True
1001
+ _supports_cache_class = True
1002
+
1003
+ def _init_weights(self, module):
1004
+ std = self.config.initializer_range
1005
+ if isinstance(module, nn.Linear):
1006
+ module.weight.data.normal_(mean=0.0, std=std)
1007
+ if module.bias is not None:
1008
+ module.bias.data.zero_()
1009
+ elif isinstance(module, nn.Embedding):
1010
+ module.weight.data.normal_(mean=0.0, std=std)
1011
+ if module.padding_idx is not None:
1012
+ module.weight.data[module.padding_idx].zero_()
1013
+
1014
+
1015
+ Deepseek_INPUTS_DOCSTRING = r"""
1016
+ Args:
1017
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1018
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1019
+ it.
1020
+
1021
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1022
+ [`PreTrainedTokenizer.__call__`] for details.
1023
+
1024
+ [What are input IDs?](../glossary#input-ids)
1025
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1026
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1027
+
1028
+ - 1 for tokens that are **not masked**,
1029
+ - 0 for tokens that are **masked**.
1030
+
1031
+ [What are attention masks?](../glossary#attention-mask)
1032
+
1033
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1034
+ [`PreTrainedTokenizer.__call__`] for details.
1035
+
1036
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1037
+ `past_key_values`).
1038
+
1039
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1040
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1041
+ information on the default strategy.
1042
+
1043
+ - 1 indicates the head is **not masked**,
1044
+ - 0 indicates the head is **masked**.
1045
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1046
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1047
+ config.n_positions - 1]`.
1048
+
1049
+ [What are position IDs?](../glossary#position-ids)
1050
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1051
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1052
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1053
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1054
+
1055
+ Two formats are allowed:
1056
+ - a [`~cache_utils.Cache`] instance;
1057
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1058
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1059
+ cache format.
1060
+
1061
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1062
+ legacy cache format will be returned.
1063
+
1064
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1065
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1066
+ of shape `(batch_size, sequence_length)`.
1067
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1068
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1069
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1070
+ model's internal embedding lookup matrix.
1071
+ use_cache (`bool`, *optional*):
1072
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1073
+ `past_key_values`).
1074
+ output_attentions (`bool`, *optional*):
1075
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1076
+ tensors for more detail.
1077
+ output_hidden_states (`bool`, *optional*):
1078
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1079
+ more detail.
1080
+ return_dict (`bool`, *optional*):
1081
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1082
+ """
1083
+
1084
+
1085
+ @add_start_docstrings(
1086
+ "The bare Deepseek Model outputting raw hidden-states without any specific head on top.",
1087
+ Deepseek_START_DOCSTRING,
1088
+ )
1089
+ class DeepseekModel(DeepseekPreTrainedModel):
1090
+ """
1091
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekDecoderLayer`]
1092
+
1093
+ Args:
1094
+ config: DeepseekConfig
1095
+ """
1096
+
1097
+ def __init__(self, config: DeepseekConfig):
1098
+ super().__init__(config)
1099
+ self.padding_idx = config.pad_token_id
1100
+ self.vocab_size = config.vocab_size
1101
+
1102
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1103
+ self.layers = nn.ModuleList(
1104
+ [DeepseekDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1105
+ )
1106
+ self._use_sdpa = config._attn_implementation == "sdpa"
1107
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1108
+ self.norm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1109
+
1110
+ self.gradient_checkpointing = False
1111
+ # Initialize weights and apply final processing
1112
+ self.post_init()
1113
+
1114
+ def get_input_embeddings(self):
1115
+ return self.embed_tokens
1116
+
1117
+ def set_input_embeddings(self, value):
1118
+ self.embed_tokens = value
1119
+
1120
+ @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
1121
+ def forward(
1122
+ self,
1123
+ input_ids: torch.LongTensor = None,
1124
+ attention_mask: Optional[torch.Tensor] = None,
1125
+ position_ids: Optional[torch.LongTensor] = None,
1126
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1127
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1128
+ use_cache: Optional[bool] = None,
1129
+ output_attentions: Optional[bool] = None,
1130
+ output_hidden_states: Optional[bool] = None,
1131
+ return_dict: Optional[bool] = None,
1132
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1133
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1134
+ output_hidden_states = (
1135
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1136
+ )
1137
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1138
+
1139
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1140
+
1141
+ # retrieve input_ids and inputs_embeds
1142
+ if input_ids is not None and inputs_embeds is not None:
1143
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1144
+ elif input_ids is not None:
1145
+ batch_size, seq_length = input_ids.shape[:2]
1146
+ elif inputs_embeds is not None:
1147
+ batch_size, seq_length = inputs_embeds.shape[:2]
1148
+ else:
1149
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1150
+
1151
+ if self.gradient_checkpointing and self.training:
1152
+ if use_cache:
1153
+ logger.warning_once(
1154
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1155
+ )
1156
+ use_cache = False
1157
+
1158
+ past_key_values_length = 0
1159
+ if use_cache:
1160
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1161
+ if use_legacy_cache:
1162
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1163
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1164
+
1165
+ if position_ids is None:
1166
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1167
+ position_ids = torch.arange(
1168
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1169
+ )
1170
+ position_ids = position_ids.unsqueeze(0)
1171
+
1172
+ if inputs_embeds is None:
1173
+ inputs_embeds = self.embed_tokens(input_ids)
1174
+
1175
+ if self._use_flash_attention_2:
1176
+ # 2d mask is passed through the layers
1177
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1178
+ elif self._use_sdpa and not output_attentions:
1179
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1180
+ # the manual implementation that requires a 4D causal mask in all cases.
1181
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1182
+ attention_mask,
1183
+ (batch_size, seq_length),
1184
+ inputs_embeds,
1185
+ past_key_values_length,
1186
+ )
1187
+ else:
1188
+ # 4d mask is passed through the layers
1189
+ attention_mask = _prepare_4d_causal_attention_mask(
1190
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1191
+ )
1192
+
1193
+ # embed positions
1194
+ hidden_states = inputs_embeds
1195
+
1196
+ # decoder layers
1197
+ all_hidden_states = () if output_hidden_states else None
1198
+ all_self_attns = () if output_attentions else None
1199
+ next_decoder_cache = None
1200
+
1201
+ for decoder_layer in self.layers:
1202
+ if output_hidden_states:
1203
+ all_hidden_states += (hidden_states,)
1204
+
1205
+ if self.gradient_checkpointing and self.training:
1206
+ layer_outputs = self._gradient_checkpointing_func(
1207
+ decoder_layer.__call__,
1208
+ hidden_states,
1209
+ attention_mask,
1210
+ position_ids,
1211
+ past_key_values,
1212
+ output_attentions,
1213
+ use_cache,
1214
+ )
1215
+ else:
1216
+ layer_outputs = decoder_layer(
1217
+ hidden_states,
1218
+ attention_mask=attention_mask,
1219
+ position_ids=position_ids,
1220
+ past_key_value=past_key_values,
1221
+ output_attentions=output_attentions,
1222
+ use_cache=use_cache,
1223
+ )
1224
+
1225
+ hidden_states = layer_outputs[0]
1226
+
1227
+ if use_cache:
1228
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1229
+
1230
+ if output_attentions:
1231
+ all_self_attns += (layer_outputs[1],)
1232
+
1233
+ hidden_states = self.norm(hidden_states)
1234
+
1235
+ # add hidden states from the last decoder layer
1236
+ if output_hidden_states:
1237
+ all_hidden_states += (hidden_states,)
1238
+
1239
+ next_cache = None
1240
+ if use_cache:
1241
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1242
+ if not return_dict:
1243
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1244
+ return BaseModelOutputWithPast(
1245
+ last_hidden_state=hidden_states,
1246
+ past_key_values=next_cache,
1247
+ hidden_states=all_hidden_states,
1248
+ attentions=all_self_attns,
1249
+ )
1250
+
1251
+
1252
+ class DeepseekForCausalLM(DeepseekPreTrainedModel):
1253
+ _tied_weights_keys = ["lm_head.weight"]
1254
+
1255
+ def __init__(self, config):
1256
+ super().__init__(config)
1257
+ self.model = DeepseekModel(config)
1258
+ self.vocab_size = config.vocab_size
1259
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1260
+
1261
+ # Initialize weights and apply final processing
1262
+ self.post_init()
1263
+
1264
+ def get_input_embeddings(self):
1265
+ return self.model.embed_tokens
1266
+
1267
+ def set_input_embeddings(self, value):
1268
+ self.model.embed_tokens = value
1269
+
1270
+ def get_output_embeddings(self):
1271
+ return self.lm_head
1272
+
1273
+ def set_output_embeddings(self, new_embeddings):
1274
+ self.lm_head = new_embeddings
1275
+
1276
+ def set_decoder(self, decoder):
1277
+ self.model = decoder
1278
+
1279
+ def get_decoder(self):
1280
+ return self.model
1281
+
1282
+ @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
1283
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1284
+ def forward(
1285
+ self,
1286
+ input_ids: torch.LongTensor = None,
1287
+ attention_mask: Optional[torch.Tensor] = None,
1288
+ position_ids: Optional[torch.LongTensor] = None,
1289
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1290
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1291
+ labels: Optional[torch.LongTensor] = None,
1292
+ use_cache: Optional[bool] = None,
1293
+ output_attentions: Optional[bool] = None,
1294
+ output_hidden_states: Optional[bool] = None,
1295
+ return_dict: Optional[bool] = None,
1296
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1297
+ r"""
1298
+ Args:
1299
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1300
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1301
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1302
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1303
+
1304
+ Returns:
1305
+
1306
+ Example:
1307
+
1308
+ ```python
1309
+ >>> from transformers import AutoTokenizer, DeepseekForCausalLM
1310
+
1311
+ >>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1312
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1313
+
1314
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1315
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1316
+
1317
+ >>> # Generate
1318
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1319
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1320
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1321
+ ```"""
1322
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1323
+ output_hidden_states = (
1324
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1325
+ )
1326
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1327
+
1328
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1329
+ outputs = self.model(
1330
+ input_ids=input_ids,
1331
+ attention_mask=attention_mask,
1332
+ position_ids=position_ids,
1333
+ past_key_values=past_key_values,
1334
+ inputs_embeds=inputs_embeds,
1335
+ use_cache=use_cache,
1336
+ output_attentions=output_attentions,
1337
+ output_hidden_states=output_hidden_states,
1338
+ return_dict=return_dict,
1339
+ )
1340
+
1341
+ hidden_states = outputs[0]
1342
+ if self.config.pretraining_tp > 1:
1343
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1344
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1345
+ logits = torch.cat(logits, dim=-1)
1346
+ else:
1347
+ logits = self.lm_head(hidden_states)
1348
+ logits = logits.float()
1349
+
1350
+ loss = None
1351
+ if labels is not None:
1352
+ # Shift so that tokens < n predict n
1353
+ shift_logits = logits[..., :-1, :].contiguous()
1354
+ shift_labels = labels[..., 1:].contiguous()
1355
+ # Flatten the tokens
1356
+ loss_fct = CrossEntropyLoss()
1357
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1358
+ shift_labels = shift_labels.view(-1)
1359
+ # Enable model parallelism
1360
+ shift_labels = shift_labels.to(shift_logits.device)
1361
+ loss = loss_fct(shift_logits, shift_labels)
1362
+
1363
+ if not return_dict:
1364
+ output = (logits,) + outputs[1:]
1365
+ return (loss,) + output if loss is not None else output
1366
+
1367
+ return CausalLMOutputWithPast(
1368
+ loss=loss,
1369
+ logits=logits,
1370
+ past_key_values=outputs.past_key_values,
1371
+ hidden_states=outputs.hidden_states,
1372
+ attentions=outputs.attentions,
1373
+ )
1374
+
1375
+ def prepare_inputs_for_generation(
1376
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1377
+ ):
1378
+ if past_key_values is not None:
1379
+ if isinstance(past_key_values, Cache):
1380
+ cache_length = past_key_values.get_seq_length()
1381
+ past_length = past_key_values.seen_tokens
1382
+ max_cache_length = past_key_values.get_max_length()
1383
+ else:
1384
+ cache_length = past_length = past_key_values[0][0].shape[2]
1385
+ max_cache_length = None
1386
+
1387
+ # Keep only the unprocessed tokens:
1388
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1389
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1390
+ # input)
1391
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1392
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1393
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1394
+ # input_ids based on the past_length.
1395
+ elif past_length < input_ids.shape[1]:
1396
+ input_ids = input_ids[:, past_length:]
1397
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1398
+
1399
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1400
+ if (
1401
+ max_cache_length is not None
1402
+ and attention_mask is not None
1403
+ and cache_length + input_ids.shape[1] > max_cache_length
1404
+ ):
1405
+ attention_mask = attention_mask[:, -max_cache_length:]
1406
+
1407
+ position_ids = kwargs.get("position_ids", None)
1408
+ if attention_mask is not None and position_ids is None:
1409
+ # create position_ids on the fly for batch generation
1410
+ position_ids = attention_mask.long().cumsum(-1) - 1
1411
+ position_ids.masked_fill_(attention_mask == 0, 1)
1412
+ if past_key_values:
1413
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1414
+
1415
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1416
+ if inputs_embeds is not None and past_key_values is None:
1417
+ model_inputs = {"inputs_embeds": inputs_embeds}
1418
+ else:
1419
+ model_inputs = {"input_ids": input_ids}
1420
+
1421
+ model_inputs.update(
1422
+ {
1423
+ "position_ids": position_ids,
1424
+ "past_key_values": past_key_values,
1425
+ "use_cache": kwargs.get("use_cache"),
1426
+ "attention_mask": attention_mask,
1427
+ }
1428
+ )
1429
+ return model_inputs
1430
+
1431
+ @staticmethod
1432
+ def _reorder_cache(past_key_values, beam_idx):
1433
+ reordered_past = ()
1434
+ for layer_past in past_key_values:
1435
+ reordered_past += (
1436
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1437
+ )
1438
+ return reordered_past
1439
+
1440
+
1441
+ @add_start_docstrings(
1442
+ """
1443
+ The Deepseek Model transformer with a sequence classification head on top (linear layer).
1444
+
1445
+ [`DeepseekForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1446
+ (e.g. GPT-2) do.
1447
+
1448
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1449
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1450
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1451
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1452
+ each row of the batch).
1453
+ """,
1454
+ Deepseek_START_DOCSTRING,
1455
+ )
1456
+ class DeepseekForSequenceClassification(DeepseekPreTrainedModel):
1457
+ def __init__(self, config):
1458
+ super().__init__(config)
1459
+ self.num_labels = config.num_labels
1460
+ self.model = DeepseekModel(config)
1461
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1462
+
1463
+ # Initialize weights and apply final processing
1464
+ self.post_init()
1465
+
1466
+ def get_input_embeddings(self):
1467
+ return self.model.embed_tokens
1468
+
1469
+ def set_input_embeddings(self, value):
1470
+ self.model.embed_tokens = value
1471
+
1472
+ @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING)
1473
+ def forward(
1474
+ self,
1475
+ input_ids: torch.LongTensor = None,
1476
+ attention_mask: Optional[torch.Tensor] = None,
1477
+ position_ids: Optional[torch.LongTensor] = None,
1478
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1479
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1480
+ labels: Optional[torch.LongTensor] = None,
1481
+ use_cache: Optional[bool] = None,
1482
+ output_attentions: Optional[bool] = None,
1483
+ output_hidden_states: Optional[bool] = None,
1484
+ return_dict: Optional[bool] = None,
1485
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1486
+ r"""
1487
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1488
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1489
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1490
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1491
+ """
1492
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1493
+
1494
+ transformer_outputs = self.model(
1495
+ input_ids,
1496
+ attention_mask=attention_mask,
1497
+ position_ids=position_ids,
1498
+ past_key_values=past_key_values,
1499
+ inputs_embeds=inputs_embeds,
1500
+ use_cache=use_cache,
1501
+ output_attentions=output_attentions,
1502
+ output_hidden_states=output_hidden_states,
1503
+ return_dict=return_dict,
1504
+ )
1505
+ hidden_states = transformer_outputs[0]
1506
+ logits = self.score(hidden_states)
1507
+
1508
+ if input_ids is not None:
1509
+ batch_size = input_ids.shape[0]
1510
+ else:
1511
+ batch_size = inputs_embeds.shape[0]
1512
+
1513
+ if self.config.pad_token_id is None and batch_size != 1:
1514
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1515
+ if self.config.pad_token_id is None:
1516
+ sequence_lengths = -1
1517
+ else:
1518
+ if input_ids is not None:
1519
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1520
+ logits.device
1521
+ )
1522
+ else:
1523
+ sequence_lengths = -1
1524
+
1525
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1526
+
1527
+ loss = None
1528
+ if labels is not None:
1529
+ labels = labels.to(logits.device)
1530
+ if self.config.problem_type is None:
1531
+ if self.num_labels == 1:
1532
+ self.config.problem_type = "regression"
1533
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1534
+ self.config.problem_type = "single_label_classification"
1535
+ else:
1536
+ self.config.problem_type = "multi_label_classification"
1537
+
1538
+ if self.config.problem_type == "regression":
1539
+ loss_fct = MSELoss()
1540
+ if self.num_labels == 1:
1541
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1542
+ else:
1543
+ loss = loss_fct(pooled_logits, labels)
1544
+ elif self.config.problem_type == "single_label_classification":
1545
+ loss_fct = CrossEntropyLoss()
1546
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1547
+ elif self.config.problem_type == "multi_label_classification":
1548
+ loss_fct = BCEWithLogitsLoss()
1549
+ loss = loss_fct(pooled_logits, labels)
1550
+ if not return_dict:
1551
+ output = (pooled_logits,) + transformer_outputs[1:]
1552
+ return ((loss,) + output) if loss is not None else output
1553
+
1554
+ return SequenceClassifierOutputWithPast(
1555
+ loss=loss,
1556
+ logits=pooled_logits,
1557
+ past_key_values=transformer_outputs.past_key_values,
1558
+ hidden_states=transformer_outputs.hidden_states,
1559
+ attentions=transformer_outputs.attentions,
1560
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<CLS>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<MASK>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "<SEP>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf13ff3effdbc1c1b4ab80228b601a39ac7cef28f5469961fd3b6b83151e2e82
3
+ size 1068564
tokenizer_config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "4": {
29
+ "content": "<pad>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "5": {
37
+ "content": "<CLS>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "6": {
45
+ "content": "<SEP>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "7": {
53
+ "content": "<EOD>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "59528": {
61
+ "content": "<MASK>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ }
68
+ },
69
+ "additional_special_tokens": [],
70
+ "bos_token": "<s>",
71
+ "clean_up_tokenization_spaces": true,
72
+ "cls_token": "<CLS>",
73
+ "eos_token": "</s>",
74
+ "extra_ids": 0,
75
+ "legacy": true,
76
+ "mask_token": "<MASK>",
77
+ "model_max_length": 16384,
78
+ "pad_token": "<pad>",
79
+ "sep_token": "<SEP>",
80
+ "sp_model_kwargs": {},
81
+ "split_special_tokens": true,
82
+ "tokenizer_class": "T5Tokenizer",
83
+ "unk_token": "<unk>"
84
+ }