File size: 8,852 Bytes
0fb4c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
"""
r_em network suites designed to restore different modalities of electron microscopy data
Author: Ivan Lobato
Email: [email protected]
"""
import os
import pathlib
from typing import Tuple
import h5py
import numpy as np
import tensorflow as tf
def expand_dimensions(x):
if x.ndim == 2:
return np.expand_dims(x, axis=(0, 3))
elif x.ndim == 3 and x.shape[-1] != 1:
return np.expand_dims(x, axis=3)
else:
return x
def add_extra_row_or_column(x):
if x.shape[1] % 2 == 1:
v_mean = x.mean(axis=(1, 2), keepdims=True)
v_mean_tiled = np.tile(v_mean, (1, 1, x.shape[2], 1))
x = np.concatenate((x, v_mean_tiled), axis=1)
if x.shape[2] % 2 == 1:
v_mean = x.mean(axis=(1, 2), keepdims=True)
v_mean_tiled = np.tile(v_mean, (1, x.shape[1], 1, 1))
x = np.concatenate((x, v_mean_tiled), axis=2)
return x
def add_extra_row_or_column_patch_based(x):
if x.shape[0] % 2 == 1:
v_mean = x.mean(axis=(0, 1), keepdims=True)
v_mean_tiled = np.tile(v_mean, (1, x.shape[1]))
x = np.concatenate((x, v_mean_tiled), axis=0)
if x.shape[1] % 2 == 1:
v_mean = x.mean(axis=(0, 1), keepdims=True)
v_mean_tiled = np.tile(v_mean, (x.shape[0], 1))
x = np.concatenate((x, v_mean_tiled), axis=1)
return x
def remove_extra_row_or_column(x, x_i_sh):
if x_i_sh != x.shape:
return x[:, :x_i_sh[1], :x_i_sh[2], :]
else:
return x
def remove_extra_row_or_column_patch_based(x, x_i_sh):
if x_i_sh != x.shape:
return x[:x_i_sh[0], :x_i_sh[1]]
else:
return x
def adjust_output_dimensions(x, x_i_shape):
ndim = len(x_i_shape)
if ndim == 2:
return x.squeeze()
elif ndim == 3:
if x_i_shape[-1] == 1:
return x.squeeze(axis=0)
else:
return x.squeeze(axis=-1)
else:
return x
def get_centered_range(n, patch_size, stride):
patch_size_half = patch_size // 2
if patch_size_half == n-patch_size_half:
return np.array([patch_size_half])
p = np.arange(patch_size_half, n-patch_size_half, stride)
if p[-1] + patch_size_half < n:
p = np.append(p, n - patch_size_half)
return p
def get_range(im_shape, patch_size, strides):
py = get_centered_range(im_shape[0], patch_size[0], strides[0])
px = get_centered_range(im_shape[1], patch_size[1], strides[1])
for iy in py:
for ix in px:
yield slice(iy - patch_size[0] // 2, iy + patch_size[0] // 2), slice(ix - patch_size[1] // 2, ix + patch_size[1] // 2)
def process_prediction(data, x_r, count_map, window, ib, sy, sx):
for ik in range(ib):
x_r_ik = data[ik, ..., 0].squeeze() * window
count_map[sy[ik], sx[ik]] += window
x_r[sy[ik], sx[ik]] += x_r_ik
def butterworth_window(shape, cutoff_radius_ftr, order):
assert len(shape) == 2, "Shape must be a tuple of length 2 (height, width)"
assert 0 < cutoff_radius_ftr <= 0.5, "Cutoff frequency must be in the range (0, 0.5]"
def butterworth_1d(length, cutoff_radius_ftr, order):
n = np.arange(-length//2, length-length//2)
window = 1 / (1 + (n / (cutoff_radius_ftr * length)) ** (2 * order))
return window
window_y = butterworth_1d(shape[0], cutoff_radius_ftr, order)
window_x = butterworth_1d(shape[1], cutoff_radius_ftr, order)
window = np.outer(window_y, window_x)
return window
class Model(tf.keras.Model):
def __init__(self, model_path):
super(Model, self).__init__()
self.base_model = tf.keras.models.load_model(model_path, compile=False)
self.base_model.compile()
def call(self, inputs, training=None, mask=None):
return self.base_model(inputs, training=training, mask=mask)
def summary(self):
return self.base_model.summary()
def predict(self, x, batch_size=16, verbose=0, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False):
x_i_sh = x.shape
# Expanding dimensions based on the input shape
x = expand_dimensions(x)
# Converting to float32 if necessary
x = x.astype(np.float32)
x_i_sh_e = x.shape
# Adding extra row or column if necessary
x = add_extra_row_or_column(x)
batch_size = min(batch_size, x.shape[0])
# Model prediction
x = self.base_model.predict(x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
# Removing extra row or column if added
x = remove_extra_row_or_column(x, x_i_sh_e)
# Adjusting output dimensions to match input dimensions
return adjust_output_dimensions(x, x_i_sh)
def predict_patch_based(self, x, patch_size=None, stride=None, batch_size=16):
if patch_size is None:
return self.predict(x, batch_size=batch_size)
x = x.squeeze().astype(np.float32)
x_i_sh_e = x.shape
# Adding extra row or column if necessary
x = add_extra_row_or_column_patch_based(x)
patch_size = max(patch_size, 128)
patch_size = (min(patch_size, x.shape[0]), min(patch_size, x.shape[1]))
# Adjust the stride to have an overlap between patches
overlap = (patch_size[0]//2, patch_size[1]//2)
if stride is None:
stride = overlap
else:
stride = (min(stride, overlap[0]), min(stride, overlap[1]))
batch_size = max(batch_size, 4)
data = np.zeros((batch_size, *patch_size, 1), dtype=np.float32)
sy = [slice(0) for _ in range(batch_size)]
sx = [slice(0) for _ in range(batch_size)]
x_r = np.zeros(x.shape, dtype=np.float32)
count_map = np.zeros(x.shape, dtype=np.float32)
window = butterworth_window(patch_size, 0.33, 4)
ib = 0
for s_iy, s_ix in get_range(x.shape, patch_size, stride):
if ib < batch_size:
data[ib, ..., 0] = x[s_iy, s_ix]
sy[ib] = s_iy
sx[ib] = s_ix
ib += 1
if ib == batch_size:
data = self.base_model.predict(data, batch_size=batch_size)
process_prediction(data, x_r, count_map, window, ib, sy, sx)
ib = 0
if ib != batch_size:
data = self.base_model.predict(data[:ib, ...], batch_size=batch_size)
process_prediction(data, x_r, count_map, window, ib, sy, sx)
# Normalize the denoised image using the count_map
x_r /= count_map
# Removing extra row or column if added
x = remove_extra_row_or_column_patch_based(x, x_i_sh_e)
return x_r
def load_network(model_name: str = 'sfr_hrstem'):
"""
Load r_em neural network model.
:param model_name: A string representing the name of the model.
:return: A tensorflow.keras.Model object.
"""
if os.path.isdir(model_name):
model_path = pathlib.Path(model_name).resolve()
else:
model_name = model_name.lower()
model_path = pathlib.Path(__file__).resolve().parent / 'models' / model_name
model = Model(model_path)
return model
def load_sim_test_data(file_name: str = 'sfr_hrstem') -> Tuple[np.ndarray, np.ndarray]:
"""
Load test data for r_em neural network.
:param model_name: A string representing the name of the model.
:return: A tuple containing two numpy arrays representing the input (x) and output (y) data.
"""
if os.path.isfile(file_name):
path = pathlib.Path(file_name).resolve()
else:
file_name = file_name.lower()
path = pathlib.Path(__file__).resolve().parent / 'test_data' / f'{file_name}.h5'
with h5py.File(path, 'r') as h5file:
x = np.asarray(h5file['x'][:], dtype=np.float32).transpose(0, 3, 2, 1)
y = np.asarray(h5file['y'][:], dtype=np.float32).transpose(0, 3, 2, 1)
return x, y
def load_hrstem_exp_test_data(file_name: str = 'exp_hrstem') -> Tuple[np.ndarray, np.ndarray]:
"""
Load test data for r_em neural network.
:param model_name: A string representing the name of the model.
:return: A tuple containing two numpy arrays representing the input (x) and output (y) data.
"""
if os.path.isfile(file_name):
path = pathlib.Path(file_name).resolve()
else:
file_name = file_name.lower()
path = pathlib.Path(__file__).resolve().parent / 'test_data' / f'{file_name}.h5'
with h5py.File(path, 'r') as f:
x = f['x'][:]
if x.ndim == 4:
x = np.asarray(x, dtype=np.float32).transpose(0, 3, 2, 1)
else:
x = np.asarray(x, dtype=np.float32).transpose(1, 0)
return x |