wdika commited on
Commit
5dc0f28
·
verified ·
1 Parent(s): 7cb7cc6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - fastMRIBrainsMulticoil
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - XPDNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ XPDNet for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_XPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: XPDNet
56
+ num_primal: 5
57
+ num_dual: 1
58
+ num_iter: 10
59
+ use_primal_only: true
60
+ kspace_model_architecture: CONV
61
+ kspace_in_channels: 2
62
+ kspace_out_channels: 2
63
+ dual_conv_hidden_channels: 16
64
+ dual_conv_num_dubs: 2
65
+ dual_conv_batchnorm: false
66
+ image_model_architecture: MWCNN
67
+ imspace_in_channels: 2
68
+ imspace_out_channels: 2
69
+ mwcnn_hidden_channels: 16
70
+ mwcnn_num_scales: 0
71
+ mwcnn_bias: true
72
+ mwcnn_batchnorm: false
73
+ normalize_image: true
74
+ dimensionality: 2
75
+ reconstruction_loss:
76
+ l1: 0.1
77
+ ssim: 0.9
78
+ estimate_coil_sensitivity_maps_with_nn: true
79
+ ```
80
+
81
+ ## Training
82
+ ```base
83
+ optim:
84
+ name: adam
85
+ lr: 1e-4
86
+ betas:
87
+ - 0.9
88
+ - 0.999
89
+ weight_decay: 0.0
90
+ sched:
91
+ name: InverseSquareRootAnnealing
92
+ min_lr: 0.0
93
+ last_epoch: -1
94
+ warmup_ratio: 0.1
95
+
96
+ trainer:
97
+ strategy: ddp_find_unused_parameters_false
98
+ accelerator: gpu
99
+ devices: 1
100
+ num_nodes: 1
101
+ max_epochs: 20
102
+ precision: 16-mixed
103
+ enable_checkpointing: false
104
+ logger: false
105
+ log_every_n_steps: 50
106
+ check_val_every_n_epoch: -1
107
+ max_steps: -1
108
+ ```
109
+
110
+ ## Performance
111
+
112
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files.
113
+
114
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
115
+
116
+ Results
117
+ -------
118
+
119
+ Evaluation against RSS targets
120
+ ------------------------------
121
+ 4x: MSE = 0.001292 +/- 0.006735 NMSE = 0.03317 +/- 0.1122 PSNR = 31.03 +/- 6.749 SSIM = 0.8543 +/- 0.2115
122
+
123
+ 8x: MSE = 0.002671 +/- 0.00606 NMSE = 0.07137 +/- 0.1499 PSNR = 26.96 +/- 6.179 SSIM = 0.7881 +/- 0.2177
124
+
125
+
126
+ ## Limitations
127
+
128
+ This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
129
+
130
+
131
+ ## References
132
+
133
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
134
+
135
+ [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.