wdika commited on
Commit
7d7963f
·
verified ·
1 Parent(s): 1b277b7

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - CC359
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - XPDNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_XPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ XPDNet for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_XPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_XPDNet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: XPDNet
56
+ num_primal: 5
57
+ num_dual: 1
58
+ num_iter: 10
59
+ use_primal_only: true
60
+ kspace_model_architecture: CONV
61
+ kspace_in_channels: 2
62
+ kspace_out_channels: 2
63
+ dual_conv_hidden_channels: 16
64
+ dual_conv_num_dubs: 2
65
+ dual_conv_batchnorm: false
66
+ image_model_architecture: MWCNN
67
+ imspace_in_channels: 2
68
+ imspace_out_channels: 2
69
+ mwcnn_hidden_channels: 16
70
+ mwcnn_num_scales: 0
71
+ mwcnn_bias: true
72
+ mwcnn_batchnorm: false
73
+ normalize_image: true
74
+ dimensionality: 2
75
+ reconstruction_loss:
76
+ l1: 0.1
77
+ ssim: 0.9
78
+ estimate_coil_sensitivity_maps_with_nn: true
79
+ ```
80
+
81
+ ## Training
82
+ ```base
83
+ optim:
84
+ name: adamw
85
+ lr: 1e-4
86
+ betas:
87
+ - 0.9
88
+ - 0.999
89
+ weight_decay: 0.0
90
+ sched:
91
+ name: CosineAnnealing
92
+ min_lr: 0.0
93
+ last_epoch: -1
94
+ warmup_ratio: 0.1
95
+
96
+ trainer:
97
+ strategy: ddp_find_unused_parameters_false
98
+ accelerator: gpu
99
+ devices: 1
100
+ num_nodes: 1
101
+ max_epochs: 20
102
+ precision: 16-mixed
103
+ enable_checkpointing: false
104
+ logger: false
105
+ log_every_n_steps: 50
106
+ check_val_every_n_epoch: -1
107
+ max_steps: -1
108
+ ```
109
+
110
+ ## Performance
111
+
112
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
113
+
114
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
115
+
116
+ Results
117
+ -------
118
+
119
+ Evaluation against RSS targets
120
+ ------------------------------
121
+ 5x: MSE = 0.004192 +/- 0.004255 NMSE = 0.06401 +/- 0.06475 PSNR = 24.27 +/- 4.135 SSIM = 0.7609 +/- 0.09962
122
+
123
+ 10x: MSE = 0.00581 +/- 0.00445 NMSE = 0.08987 +/- 0.07376 PSNR = 22.65 +/- 3.225 SSIM = 0.6997 +/- 0.1119
124
+
125
+
126
+ ## Limitations
127
+
128
+ This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
129
+
130
+
131
+ ## References
132
+
133
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
134
+
135
+ [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186