wdika commited on
Commit
b910e22
·
1 Parent(s): b22e2c0

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +157 -0
readme_template.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - CC359
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - RIM
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_RIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Recurrent Inference Machines (RIM) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_RIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_RIM_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: CIRIM
56
+ recurrent_layer: GRU
57
+ conv_filters:
58
+ - 64
59
+ - 64
60
+ - 2
61
+ conv_kernels:
62
+ - 5
63
+ - 3
64
+ - 3
65
+ conv_dilations:
66
+ - 1
67
+ - 2
68
+ - 1
69
+ conv_bias:
70
+ - true
71
+ - true
72
+ - false
73
+ recurrent_filters:
74
+ - 64
75
+ - 64
76
+ - 0
77
+ recurrent_kernels:
78
+ - 1
79
+ - 1
80
+ - 0
81
+ recurrent_dilations:
82
+ - 1
83
+ - 1
84
+ - 0
85
+ recurrent_bias:
86
+ - true
87
+ - true
88
+ - false
89
+ depth: 2
90
+ time_steps: 8
91
+ conv_dim: 2
92
+ num_cascades: 1
93
+ no_dc: true
94
+ keep_prediction: true
95
+ accumulate_predictions: true
96
+ dimensionality: 2
97
+ reconstruction_loss:
98
+ l1: 0.1
99
+ ssim: 0.9
100
+ estimate_coil_sensitivity_maps_with_nn: true
101
+ ```
102
+
103
+ ## Training
104
+ ```base
105
+ optim:
106
+ name: adamw
107
+ lr: 1e-4
108
+ betas:
109
+ - 0.9
110
+ - 0.999
111
+ weight_decay: 0.0
112
+ sched:
113
+ name: CosineAnnealing
114
+ min_lr: 0.0
115
+ last_epoch: -1
116
+ warmup_ratio: 0.1
117
+
118
+ trainer:
119
+ strategy: ddp_find_unused_parameters_false
120
+ accelerator: gpu
121
+ devices: 1
122
+ num_nodes: 1
123
+ max_epochs: 20
124
+ precision: 16-mixed
125
+ enable_checkpointing: false
126
+ logger: false
127
+ log_every_n_steps: 50
128
+ check_val_every_n_epoch: -1
129
+ max_steps: -1
130
+ ```
131
+
132
+ ## Performance
133
+
134
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
135
+
136
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
137
+
138
+ Results
139
+ -------
140
+
141
+ Evaluation against RSS targets
142
+ ------------------------------
143
+ 5x: MSE = 0.002022 +/- 0.002006 NMSE = 0.03154 +/- 0.03684 PSNR = 27.45 +/- 4.32 SSIM = 0.8336 +/- 0.07706
144
+
145
+ 10x: MSE = 0.003063 +/- 0.002883 NMSE = 0.04949 +/- 0.06093 PSNR = 25.56 +/- 3.963 SSIM = 0.7881 +/- 0.09099
146
+
147
+
148
+ ## Limitations
149
+
150
+ This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
151
+
152
+
153
+ ## References
154
+
155
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
156
+
157
+ [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186