wdika commited on
Commit
cc29d7c
·
1 Parent(s): c2a37c1

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +137 -0
readme_template.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - fastMRIBrainsMulticoil
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - LPDNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_LPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Learned Primal Dual Network (LPDNet) for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_LPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_LPDNet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: LPDNet
56
+ num_primal: 5
57
+ num_dual: 5
58
+ num_iter: 5
59
+ primal_model_architecture: UNET
60
+ primal_in_channels: 2
61
+ primal_out_channels: 2
62
+ primal_unet_num_filters: 16
63
+ primal_unet_num_pool_layers: 2
64
+ primal_unet_dropout_probability: 0.0
65
+ primal_unet_padding_size: 11
66
+ primal_unet_normalize: true
67
+ dual_model_architecture: UNET
68
+ dual_in_channels: 2
69
+ dual_out_channels: 2
70
+ dual_unet_num_filters: 16
71
+ dual_unet_num_pool_layers: 2
72
+ dual_unet_dropout_probability: 0.0
73
+ dual_unet_padding_size: 11
74
+ dual_unet_normalize: true
75
+ dimensionality: 2
76
+ reconstruction_loss:
77
+ l1: 0.1
78
+ ssim: 0.9
79
+ estimate_coil_sensitivity_maps_with_nn: true
80
+ ```
81
+
82
+ ## Training
83
+ ```base
84
+ optim:
85
+ name: adam
86
+ lr: 1e-4
87
+ betas:
88
+ - 0.9
89
+ - 0.999
90
+ weight_decay: 0.0
91
+ sched:
92
+ name: InverseSquareRootAnnealing
93
+ min_lr: 0.0
94
+ last_epoch: -1
95
+ warmup_ratio: 0.1
96
+
97
+ trainer:
98
+ strategy: ddp_find_unused_parameters_false
99
+ accelerator: gpu
100
+ devices: 1
101
+ num_nodes: 1
102
+ max_epochs: 20
103
+ precision: 16-mixed
104
+ enable_checkpointing: false
105
+ logger: false
106
+ log_every_n_steps: 50
107
+ check_val_every_n_epoch: -1
108
+ max_steps: -1
109
+ ```
110
+
111
+ ## Performance
112
+
113
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files.
114
+
115
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
116
+
117
+ Results
118
+ -------
119
+
120
+ Evaluation against RSS targets
121
+ ------------------------------
122
+ 4x: MSE = 0.000939 +/- 0.004162 NMSE = 0.02527 +/- 0.09819 PSNR = 32.6 +/- 6.781 SSIM = 0.8815 +/- 0.2009
123
+
124
+ 8x: MSE = 0.001548 +/- 0.00446 NMSE = 0.04132 +/- 0.1069 PSNR = 29.51 +/- 5.934 SSIM = 0.8401 +/- 0.2084
125
+
126
+
127
+
128
+ ## Limitations
129
+
130
+ This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
131
+
132
+
133
+ ## References
134
+
135
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
136
+
137
+ [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.