wdika commited on
Commit
13b5787
·
1 Parent(s): 133a634

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +133 -0
readme_template.md ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - fastMRIBrainsMulticoil
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - KIKINet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_KIKINet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ KIKINet for 4x & 8x accelerated MRI Reconstruction on the fastMRIBrainsMulticoil dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_KIKINet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM/blob/main/REC_KIKINet_fastMRIBrainsMulticoil_equispaced_4x_8x_GDCC_1_coil_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the fastMRI Brains dataset to effectively use this model. Check the [fastMRIBrainsMulticoil](https://github.com/wdika/atommic/blob/main/projects/REC/fastMRIBrainsMulticoil/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: KIKINet
56
+ num_iter: 2
57
+ kspace_model_architecture: UNET
58
+ kspace_in_channels: 2
59
+ kspace_out_channels: 2
60
+ kspace_unet_num_filters: 16
61
+ kspace_unet_num_pool_layers: 2
62
+ kspace_unet_dropout_probability: 0.0
63
+ kspace_unet_padding_size: 11
64
+ kspace_unet_normalize: true
65
+ imspace_model_architecture: UNET
66
+ imspace_in_channels: 2
67
+ imspace_unet_num_filters: 16
68
+ imspace_unet_num_pool_layers: 2
69
+ imspace_unet_dropout_probability: 0.0
70
+ imspace_unet_padding_size: 11
71
+ imspace_unet_normalize: true
72
+ dimensionality: 2
73
+ reconstruction_loss:
74
+ l1: 0.1
75
+ ssim: 0.9
76
+ estimate_coil_sensitivity_maps_with_nn: true
77
+ ```
78
+
79
+ ## Training
80
+ ```base
81
+ optim:
82
+ name: adam
83
+ lr: 1e-4
84
+ betas:
85
+ - 0.9
86
+ - 0.999
87
+ weight_decay: 0.0
88
+ sched:
89
+ name: InverseSquareRootAnnealing
90
+ min_lr: 0.0
91
+ last_epoch: -1
92
+ warmup_ratio: 0.1
93
+
94
+ trainer:
95
+ strategy: ddp_find_unused_parameters_false
96
+ accelerator: gpu
97
+ devices: 1
98
+ num_nodes: 1
99
+ max_epochs: 20
100
+ precision: 16-mixed
101
+ enable_checkpointing: false
102
+ logger: false
103
+ log_every_n_steps: 50
104
+ check_val_every_n_epoch: -1
105
+ max_steps: -1
106
+ ```
107
+
108
+ ## Performance
109
+
110
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/fastMRIBrainsMulticoil/conf/targets) configuration files.
111
+
112
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
113
+
114
+ Results
115
+ -------
116
+
117
+ Evaluation against RSS targets
118
+ ------------------------------
119
+ 4x: MSE = 0.00109 +/- 0.003836 NMSE = 0.02942 +/- 0.08896 PSNR = 31.02 +/- 5.678 SSIM = 0.8556 +/- 0.2009
120
+
121
+ 8x: MSE = 0.002183 +/- 0.005025 NMSE = 0.05946 +/- 0.1484 PSNR = 27.78 +/- 5.821 SSIM = 0.8049 +/- 0.2074
122
+
123
+
124
+ ## Limitations
125
+
126
+ This model was trained on the fastMRIBrainsMulticoil batch0 dataset using a UNet coil sensitivity maps estimation and Geometric Decomposition Coil-Compressions to 1-coil, and might differ from the results reported on the challenge leaderboard.
127
+
128
+
129
+ ## References
130
+
131
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
132
+
133
+ [2] Muckley MJ, Riemenschneider B, Radmanesh A, Kim S, Jeong G, Ko J, Jun Y, Shin H, Hwang D, Mostapha M, Arberet S, Nickel D, Ramzi Z, Ciuciu P, Starck JL, Teuwen J, Karkalousos D, Zhang C, Sriram A, Huang Z, Yakubova N, Lui YW, Knoll F. Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Trans Med Imaging. 2021 Sep;40(9):2306-2317. doi: 10.1109/TMI.2021.3075856. Epub 2021 Aug 31. PMID: 33929957; PMCID: PMC8428775.