wdika commited on
Commit
51321bf
·
1 Parent(s): b8986cb

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +133 -0
readme_template.md ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - CC359
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - KIKINet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_KIKINet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ KIKINet for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_KIKINet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_KIKINet_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: KIKINet
56
+ num_iter: 2
57
+ kspace_model_architecture: UNET
58
+ kspace_in_channels: 2
59
+ kspace_out_channels: 2
60
+ kspace_unet_num_filters: 16
61
+ kspace_unet_num_pool_layers: 2
62
+ kspace_unet_dropout_probability: 0.0
63
+ kspace_unet_padding_size: 11
64
+ kspace_unet_normalize: true
65
+ imspace_model_architecture: UNET
66
+ imspace_in_channels: 2
67
+ imspace_unet_num_filters: 16
68
+ imspace_unet_num_pool_layers: 2
69
+ imspace_unet_dropout_probability: 0.0
70
+ imspace_unet_padding_size: 11
71
+ imspace_unet_normalize: true
72
+ dimensionality: 2
73
+ reconstruction_loss:
74
+ l1: 0.1
75
+ ssim: 0.9
76
+ estimate_coil_sensitivity_maps_with_nn: true
77
+ ```
78
+
79
+ ## Training
80
+ ```base
81
+ optim:
82
+ name: adamw
83
+ lr: 1e-4
84
+ betas:
85
+ - 0.9
86
+ - 0.999
87
+ weight_decay: 0.0
88
+ sched:
89
+ name: CosineAnnealing
90
+ min_lr: 0.0
91
+ last_epoch: -1
92
+ warmup_ratio: 0.1
93
+
94
+ trainer:
95
+ strategy: ddp_find_unused_parameters_false
96
+ accelerator: gpu
97
+ devices: 1
98
+ num_nodes: 1
99
+ max_epochs: 20
100
+ precision: 16-mixed
101
+ enable_checkpointing: false
102
+ logger: false
103
+ log_every_n_steps: 50
104
+ check_val_every_n_epoch: -1
105
+ max_steps: -1
106
+ ```
107
+
108
+ ## Performance
109
+
110
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
111
+
112
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
113
+
114
+ Results
115
+ -------
116
+
117
+ Evaluation against RSS targets
118
+ ------------------------------
119
+ 5x: MSE = 0.003224 +/- 0.003526 NMSE = 0.04931 +/- 0.05484 PSNR = 25.43 +/- 4.157 SSIM = 0.7882 +/- 0.08686
120
+
121
+ 10x: MSE = 0.004036 +/- 0.0038 NMSE = 0.06195 +/- 0.06049 PSNR = 24.37 +/- 3.88 SSIM = 0.7419 +/- 0.1053
122
+
123
+
124
+ ## Limitations
125
+
126
+ This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
127
+
128
+
129
+ ## References
130
+
131
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
132
+
133
+ [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186