wdika commited on
Commit
9b9fa2b
·
verified ·
1 Parent(s): 6797d50

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -0
README.md ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - CC359
8
+ thumbnail: null
9
+ tags:
10
+ - image-reconstruction
11
+ - CCNN
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: REC_CCNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Deep Cascade of Convolutional Neural Networks (CCNN) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/REC_CCNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM/blob/main/REC_CCNN_CC359_12_channel_poisson2d_5x_10x_NNEstimationCSM.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the CC359 dataset to effectively use this model. Check the [CC359](https://github.com/wdika/atommic/blob/main/projects/REC/CC359/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: CascadeNet
56
+ num_cascades: 10
57
+ hidden_channels: 64
58
+ n_convs: 5
59
+ batchnorm: false
60
+ no_dc: false
61
+ accumulate_predictions: false
62
+ dimensionality: 2
63
+ reconstruction_loss:
64
+ l1: 0.1
65
+ ssim: 0.9
66
+ estimate_coil_sensitivity_maps_with_nn: true
67
+ ```
68
+
69
+ ## Training
70
+ ```base
71
+ optim:
72
+ name: adamw
73
+ lr: 1e-4
74
+ betas:
75
+ - 0.9
76
+ - 0.999
77
+ weight_decay: 0.0
78
+ sched:
79
+ name: CosineAnnealing
80
+ min_lr: 0.0
81
+ last_epoch: -1
82
+ warmup_ratio: 0.1
83
+
84
+ trainer:
85
+ strategy: ddp_find_unused_parameters_false
86
+ accelerator: gpu
87
+ devices: 1
88
+ num_nodes: 1
89
+ max_epochs: 20
90
+ precision: 16-mixed
91
+ enable_checkpointing: false
92
+ logger: false
93
+ log_every_n_steps: 50
94
+ check_val_every_n_epoch: -1
95
+ max_steps: -1
96
+ ```
97
+
98
+ ## Performance
99
+
100
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/REC/CC359/conf/targets) configuration files.
101
+
102
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) script for the reconstruction task, with --evaluation_type per_slice.
103
+
104
+ Results
105
+ -------
106
+
107
+ Evaluation against RSS targets
108
+ ------------------------------
109
+ 5x: MSE = 0.00156 +/- 0.001352 NMSE = 0.02397 +/- 0.02192 PSNR = 28.36 +/- 3.693 SSIM = 0.8453 +/- 0.06374
110
+
111
+ 10x: MSE = 0.002715 +/- 0.002301 NMSE = 0.04242 +/- 0.04049 PSNR = 25.95 +/- 3.644 SSIM = 0.7831 +/- 0.08874
112
+
113
+
114
+ ## Limitations
115
+
116
+ This model was trained on the CC359 using a UNet coil sensitivity maps estimation and might differ from the results reported on the challenge leaderboard.
117
+
118
+
119
+ ## References
120
+
121
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
122
+
123
+ [2] Beauferris, Y., Teuwen, J., Karkalousos, D., Moriakov, N., Caan, M., Yiasemis, G., Rodrigues, L., Lopes, A., Pedrini, H., Rittner, L., Dannecker, M., Studenyak, V., Gröger, F., Vyas, D., Faghih-Roohi, S., Kumar Jethi, A., Chandra Raju, J., Sivaprakasam, M., Lasby, M., … Souza, R. (2022). Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.919186