wdika commited on
Commit
c7fd54d
·
1 Parent(s): d9b3d39

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +169 -0
readme_template.md ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - AHEAD
8
+ thumbnail: null
9
+ tags:
10
+ - quantitative-mri-mapping
11
+ - qCIRIM
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: QMRI_qCIRIM_AHEAD_gaussian2d_12x
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ quantitative Cascades of Independently Recurrent Inference Machines (qCIRIM) for 12x accelerated quantitative MRI mapping of R2*, S0, B0, phi maps on the AHEAD dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf).
38
+
39
+
40
+ ### Automatically instantiate the model
41
+
42
+ ```base
43
+ pretrained: true
44
+ checkpoint: https://huggingface.co/wdika/QMRI_qCIRIM_AHEAD_gaussian2d_12x/blob/main/QMRI_qCIRIM_AHEAD_gaussian2d_12x.atommic
45
+ mode: test
46
+ ```
47
+
48
+ ### Usage
49
+
50
+ You need to download the AHEAD dataset to effectively use this model. Check the [AHEAD](https://github.com/wdika/atommic/blob/main/projects/qMRI/AHEAD/README.md) page for more information.
51
+
52
+
53
+ ## Model Architecture
54
+ ```base
55
+ model:
56
+ model_name: qCIRIM
57
+ use_reconstruction_module: false
58
+ quantitative_module_recurrent_layer: IndRNN
59
+ quantitative_module_conv_filters:
60
+ - 64
61
+ - 64
62
+ - 4
63
+ quantitative_module_conv_kernels:
64
+ - 5
65
+ - 3
66
+ - 3
67
+ quantitative_module_conv_dilations:
68
+ - 1
69
+ - 2
70
+ - 1
71
+ quantitative_module_conv_bias:
72
+ - true
73
+ - true
74
+ - false
75
+ quantitative_module_recurrent_filters:
76
+ - 64
77
+ - 64
78
+ - 0
79
+ quantitative_module_recurrent_kernels:
80
+ - 1
81
+ - 1
82
+ - 0
83
+ quantitative_module_recurrent_dilations:
84
+ - 1
85
+ - 1
86
+ - 0
87
+ quantitative_module_recurrent_bias:
88
+ - true
89
+ - true
90
+ - false
91
+ quantitative_module_depth: 2
92
+ quantitative_module_time_steps: 8
93
+ quantitative_module_conv_dim: 2
94
+ quantitative_module_num_cascades: 5
95
+ quantitative_module_no_dc: true
96
+ quantitative_module_keep_prediction: true
97
+ quantitative_module_accumulate_predictions: true
98
+ quantitative_module_signal_forward_model_sequence: MEGRE
99
+ quantitative_module_dimensionality: 2
100
+ quantitative_maps_scaling_factor: 1e-3
101
+ quantitative_maps_regularization_factors:
102
+ - 150.0
103
+ - 150.0
104
+ - 1000.0
105
+ - 150.0
106
+ quantitative_loss:
107
+ ssim: 1.0
108
+ kspace_quantitative_loss: false
109
+ total_quantitative_loss_weight: 1.0 # balance between reconstruction and quantitative loss
110
+ quantitative_parameters_regularization_factors:
111
+ - R2star: 1.0
112
+ - S0: 1.0
113
+ - B0: 1.0
114
+ - phi: 1.0
115
+ ```
116
+
117
+ ## Training
118
+ ```base
119
+ optim:
120
+ name: adam
121
+ lr: 1e-4
122
+ betas:
123
+ - 0.9
124
+ - 0.98
125
+ weight_decay: 0.0
126
+ sched:
127
+ name: InverseSquareRootAnnealing
128
+ min_lr: 0.0
129
+ last_epoch: -1
130
+ warmup_ratio: 0.1
131
+
132
+ trainer:
133
+ strategy: ddp_find_unused_parameters_false
134
+ accelerator: gpu
135
+ devices: 1
136
+ num_nodes: 1
137
+ max_epochs: 20
138
+ precision: 16-mixed
139
+ enable_checkpointing: false
140
+ logger: false
141
+ log_every_n_steps: 50
142
+ check_val_every_n_epoch: -1
143
+ max_steps: -1
144
+ ```
145
+
146
+ ## Performance
147
+
148
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/qMRI/AHEAD/conf/targets) configuration files.
149
+
150
+ Evaluation can be performed using the [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/qmapping.py) script for the qmri task, with --evaluation_type per_slice.
151
+
152
+ Results
153
+ -------
154
+
155
+ Evaluation against R2*, S0, B0, phi targets
156
+ -------------------------------------------
157
+ 12x: MSE = 0.004702 +/- 0.02991 NMSE = 0.1239 +/- 0.3383 PSNR = 28.28 +/- 11.31 SSIM = 0.8814 +/- 0.1774
158
+
159
+
160
+ ## Limitations
161
+
162
+ This model was trained on very few subjects on the AHEAD dataset. It is not guaranteed to generalize to other datasets.
163
+
164
+
165
+ ## References
166
+
167
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
168
+
169
+ [2] Alkemade A, Mulder MJ, Groot JM, et al. The Amsterdam Ultra-high field adult lifespan database (AHEAD): A freely available multimodal 7 Tesla submillimeter magnetic resonance imaging database. NeuroImage 2020;221.