wdika commited on
Commit
3eb0ceb
·
1 Parent(s): 51f3f4e

Upload config

Browse files
Files changed (1) hide show
  1. readme_template.md +160 -0
readme_template.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: atommic
6
+ datasets:
7
+ - SKMTEA
8
+ thumbnail: null
9
+ tags:
10
+ - multitask-image-reconstruction-image-segmentation
11
+ - SegNet
12
+ - ATOMMIC
13
+ - pytorch
14
+ model-index:
15
+ - name: MTL_SegNet_SKMTEA_poisson2d_4x
16
+ results: []
17
+
18
+ ---
19
+
20
+
21
+ ## Model Overview
22
+
23
+ Segmentation Network MRI (SegNet) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset.
24
+
25
+
26
+ ## ATOMMIC: Training
27
+
28
+ To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version.
29
+ ```
30
+ pip install atommic['all']
31
+ ```
32
+
33
+ ## How to Use this Model
34
+
35
+ The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
36
+
37
+ Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf).
38
+
39
+ ### Automatically instantiate the model
40
+
41
+ ```base
42
+ pretrained: true
43
+ checkpoint: https://huggingface.co/wdika/MTL_SegNet_SKMTEA_poisson2d_4x/blob/main/MTL_SegNet_SKMTEA_poisson2d_4x.atommic
44
+ mode: test
45
+ ```
46
+
47
+ ### Usage
48
+
49
+ You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information.
50
+
51
+
52
+ ## Model Architecture
53
+ ```base
54
+ model:
55
+ model_name: SEGNET
56
+ use_reconstruction_module: true
57
+ input_channels: 64 # coils * 2
58
+ reconstruction_module_output_channels: 64 # coils * 2
59
+ segmentation_module_output_channels: 4
60
+ channels: 64
61
+ num_pools: 2
62
+ padding_size: 11
63
+ drop_prob: 0.0
64
+ normalize: true
65
+ padding: true
66
+ norm_groups: 2
67
+ num_cascades: 5
68
+ segmentation_final_layer_conv_dim: 2
69
+ segmentation_final_layer_kernel_size: 3
70
+ segmentation_final_layer_dilation: 1
71
+ segmentation_final_layer_bias: False
72
+ segmentation_final_layer_nonlinear: relu
73
+ segmentation_loss:
74
+ dice: 1.0
75
+ dice_loss_include_background: true # always set to true if the background is removed
76
+ dice_loss_to_onehot_y: false
77
+ dice_loss_sigmoid: false
78
+ dice_loss_softmax: false
79
+ dice_loss_other_act: none
80
+ dice_loss_squared_pred: false
81
+ dice_loss_jaccard: false
82
+ dice_loss_flatten: false
83
+ dice_loss_reduction: mean_batch
84
+ dice_loss_smooth_nr: 1e-5
85
+ dice_loss_smooth_dr: 1e-5
86
+ dice_loss_batch: true
87
+ dice_metric_include_background: true # always set to true if the background is removed
88
+ dice_metric_to_onehot_y: false
89
+ dice_metric_sigmoid: false
90
+ dice_metric_softmax: false
91
+ dice_metric_other_act: none
92
+ dice_metric_squared_pred: false
93
+ dice_metric_jaccard: false
94
+ dice_metric_flatten: false
95
+ dice_metric_reduction: mean_batch
96
+ dice_metric_smooth_nr: 1e-5
97
+ dice_metric_smooth_dr: 1e-5
98
+ dice_metric_batch: true
99
+ segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5]
100
+ segmentation_activation: sigmoid
101
+ reconstruction_loss:
102
+ l1: 1.0
103
+ kspace_reconstruction_loss: false
104
+ total_reconstruction_loss_weight: 0.5
105
+ total_segmentation_loss_weight: 0.5
106
+ ```
107
+
108
+ ## Training
109
+ ```base
110
+ optim:
111
+ name: adam
112
+ lr: 1e-4
113
+ betas:
114
+ - 0.9
115
+ - 0.98
116
+ weight_decay: 0.0
117
+ sched:
118
+ name: InverseSquareRootAnnealing
119
+ min_lr: 0.0
120
+ last_epoch: -1
121
+ warmup_ratio: 0.1
122
+
123
+ trainer:
124
+ strategy: ddp
125
+ accelerator: gpu
126
+ devices: 1
127
+ num_nodes: 1
128
+ max_epochs: 10
129
+ precision: 16-mixed
130
+ enable_checkpointing: false
131
+ logger: false
132
+ log_every_n_steps: 50
133
+ check_val_every_n_epoch: -1
134
+ max_steps: -1
135
+ ```
136
+
137
+ ## Performance
138
+
139
+ To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files.
140
+
141
+ Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice.
142
+
143
+ Results
144
+ -------
145
+
146
+ Evaluation against SENSE targets
147
+ --------------------------------
148
+ 4x: MSE = 0.001247 +/- 0.002092 NMSE = 0.02623 +/- 0.05875 PSNR = 29.95 +/- 5.115 SSIM = 0.8396 +/- 0.1071 DICE = 0.9154 +/- 0.1138 F1 = 0.2703 +/- 0.2842 HD95 = 3.002 +/- 1.449 IOU = 0.2904 +/- 0.3491
149
+
150
+
151
+ ## Limitations
152
+
153
+ This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane.
154
+
155
+
156
+ ## References
157
+
158
+ [1] [ATOMMIC](https://github.com/wdika/atommic)
159
+
160
+ [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022