--- language: - en license: apache-2.0 library_name: atommic datasets: - SKMTEA thumbnail: null tags: - multitask-image-reconstruction-image-segmentation - IDSLR - ATOMMIC - pytorch model-index: - name: MTL_IDSLR_SKMTEA_poisson2d_4x results: [] --- ## Model Overview Image domain Deep Structured Low-Rank network (IDSLR) for 5x & 10x accelerated MRI Reconstruction on the CC359 dataset. ## ATOMMIC: Training To train, fine-tune, or test the model you will need to install [ATOMMIC](https://github.com/wdika/atommic). We recommend you install it after you've installed latest Pytorch version. ``` pip install atommic['all'] ``` ## How to Use this Model The model is available for use in ATOMMIC, and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset. Corresponding configuration YAML files can be found [here](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf). ### Automatically instantiate the model ```base pretrained: true checkpoint: https://huggingface.co/wdika/MTL_IDSLR_SKMTEA_poisson2d_4x/blob/main/MTL_IDSLR_SKMTEA_poisson2d_4x.atommic mode: test ``` ### Usage You need to download the SKMTEA dataset to effectively use this model. Check the [SKMTEA](https://github.com/wdika/atommic/blob/main/projects/MTL/rs/SKMTEA/README.md) page for more information. ## Model Architecture ```base model: model_name: IDSLR use_reconstruction_module: true input_channels: 64 # coils * 2 reconstruction_module_output_channels: 64 # coils * 2 segmentation_module_output_channels: 4 channels: 64 num_pools: 2 padding_size: 11 drop_prob: 0.0 normalize: false padding: true norm_groups: 2 num_iters: 5 segmentation_loss: dice: 1.0 dice_loss_include_background: true # always set to true if the background is removed dice_loss_to_onehot_y: false dice_loss_sigmoid: false dice_loss_softmax: false dice_loss_other_act: none dice_loss_squared_pred: false dice_loss_jaccard: false dice_loss_flatten: false dice_loss_reduction: mean_batch dice_loss_smooth_nr: 1e-5 dice_loss_smooth_dr: 1e-5 dice_loss_batch: true dice_metric_include_background: true # always set to true if the background is removed dice_metric_to_onehot_y: false dice_metric_sigmoid: false dice_metric_softmax: false dice_metric_other_act: none dice_metric_squared_pred: false dice_metric_jaccard: false dice_metric_flatten: false dice_metric_reduction: mean_batch dice_metric_smooth_nr: 1e-5 dice_metric_smooth_dr: 1e-5 dice_metric_batch: true segmentation_classes_thresholds: [0.5, 0.5, 0.5, 0.5] segmentation_activation: sigmoid reconstruction_loss: l1: 1.0 kspace_reconstruction_loss: false total_reconstruction_loss_weight: 0.5 total_segmentation_loss_weight: 0.5 ``` ## Training ```base optim: name: adam lr: 1e-4 betas: - 0.9 - 0.98 weight_decay: 0.0 sched: name: InverseSquareRootAnnealing min_lr: 0.0 last_epoch: -1 warmup_ratio: 0.1 trainer: strategy: ddp accelerator: gpu devices: 1 num_nodes: 1 max_epochs: 10 precision: 16-mixed enable_checkpointing: false logger: false log_every_n_steps: 50 check_val_every_n_epoch: -1 max_steps: -1 ``` ## Performance To compute the targets using the raw k-space and the chosen coil combination method, accompanied with the chosen coil sensitivity maps estimation method, you can use [targets](https://github.com/wdika/atommic/tree/main/projects/MTL/rs/SKMTEA/conf/targets) configuration files. Evaluation can be performed using the reconstruction [evaluation](https://github.com/wdika/atommic/blob/main/tools/evaluation/reconstruction.py) and [segmentation](https://github.com/wdika/atommic/blob/main/tools/evaluation/segmentation.py) scripts for the reconstruction and the segmentation tasks, with --evaluation_type per_slice. Results ------- Evaluation against SENSE targets -------------------------------- 4x: MSE = 0.001198 +/- 0.002485 NMSE = 0.02524 +/- 0.07112 PSNR = 30.38 +/- 5.67 SSIM = 0.8364 +/- 0.1061 DICE = 0.8695 +/- 0.1342 F1 = 0.225 +/- 0.1936 HD95 = 8.724 +/- 3.298 IOU = 0.2124 +/- 0.1993 ## Limitations This model was trained on the SKM-TEA dataset for 4x accelerated MRI reconstruction and MRI segmentation with MultiTask Learning (MTL) of the axial plane. ## References [1] [ATOMMIC](https://github.com/wdika/atommic) [2] Desai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: A Dataset for Accelerated MRI Reconstruction with Dense Image Labels for Quantitative Clinical Evaluation. 2022