Training in progress, step 500
Browse files- .gitignore +1 -0
- added_tokens.json +1 -0
- config.json +107 -0
- nohup.out +800 -0
- preprocessor_config.json +9 -0
- pytorch_model.bin +3 -0
- run.sh +37 -0
- run_speech_recognition_ctc.py +829 -0
- runs/Feb06_16-31-57_job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c/1644165171.7227242/events.out.tfevents.1644165171.job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c +3 -0
- runs/Feb06_16-31-57_job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c/events.out.tfevents.1644165171.job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-*/
|
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<s>": 3653, "</s>": 3654}
|
config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
3 |
+
"activation_dropout": 0.1,
|
4 |
+
"adapter_kernel_size": 3,
|
5 |
+
"adapter_stride": 2,
|
6 |
+
"add_adapter": false,
|
7 |
+
"apply_spec_augment": true,
|
8 |
+
"architectures": [
|
9 |
+
"Wav2Vec2ForCTC"
|
10 |
+
],
|
11 |
+
"attention_dropout": 0.0,
|
12 |
+
"bos_token_id": 1,
|
13 |
+
"classifier_proj_size": 256,
|
14 |
+
"codevector_dim": 768,
|
15 |
+
"contrastive_logits_temperature": 0.1,
|
16 |
+
"conv_bias": true,
|
17 |
+
"conv_dim": [
|
18 |
+
512,
|
19 |
+
512,
|
20 |
+
512,
|
21 |
+
512,
|
22 |
+
512,
|
23 |
+
512,
|
24 |
+
512
|
25 |
+
],
|
26 |
+
"conv_kernel": [
|
27 |
+
10,
|
28 |
+
3,
|
29 |
+
3,
|
30 |
+
3,
|
31 |
+
3,
|
32 |
+
2,
|
33 |
+
2
|
34 |
+
],
|
35 |
+
"conv_stride": [
|
36 |
+
5,
|
37 |
+
2,
|
38 |
+
2,
|
39 |
+
2,
|
40 |
+
2,
|
41 |
+
2,
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"ctc_loss_reduction": "mean",
|
45 |
+
"ctc_zero_infinity": false,
|
46 |
+
"diversity_loss_weight": 0.1,
|
47 |
+
"do_stable_layer_norm": true,
|
48 |
+
"eos_token_id": 2,
|
49 |
+
"feat_extract_activation": "gelu",
|
50 |
+
"feat_extract_dropout": 0.0,
|
51 |
+
"feat_extract_norm": "layer",
|
52 |
+
"feat_proj_dropout": 0.0,
|
53 |
+
"feat_quantizer_dropout": 0.0,
|
54 |
+
"final_dropout": 0.0,
|
55 |
+
"hidden_act": "gelu",
|
56 |
+
"hidden_dropout": 0.0,
|
57 |
+
"hidden_size": 1024,
|
58 |
+
"initializer_range": 0.02,
|
59 |
+
"intermediate_size": 4096,
|
60 |
+
"layer_norm_eps": 1e-05,
|
61 |
+
"layerdrop": 0.0,
|
62 |
+
"mask_feature_length": 64,
|
63 |
+
"mask_feature_min_masks": 0,
|
64 |
+
"mask_feature_prob": 0.25,
|
65 |
+
"mask_time_length": 10,
|
66 |
+
"mask_time_min_masks": 2,
|
67 |
+
"mask_time_prob": 0.75,
|
68 |
+
"model_type": "wav2vec2",
|
69 |
+
"num_adapter_layers": 3,
|
70 |
+
"num_attention_heads": 16,
|
71 |
+
"num_codevector_groups": 2,
|
72 |
+
"num_codevectors_per_group": 320,
|
73 |
+
"num_conv_pos_embedding_groups": 16,
|
74 |
+
"num_conv_pos_embeddings": 128,
|
75 |
+
"num_feat_extract_layers": 7,
|
76 |
+
"num_hidden_layers": 24,
|
77 |
+
"num_negatives": 100,
|
78 |
+
"output_hidden_size": 1024,
|
79 |
+
"pad_token_id": 3652,
|
80 |
+
"proj_codevector_dim": 768,
|
81 |
+
"tdnn_dilation": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
3,
|
85 |
+
1,
|
86 |
+
1
|
87 |
+
],
|
88 |
+
"tdnn_dim": [
|
89 |
+
512,
|
90 |
+
512,
|
91 |
+
512,
|
92 |
+
512,
|
93 |
+
1500
|
94 |
+
],
|
95 |
+
"tdnn_kernel": [
|
96 |
+
5,
|
97 |
+
3,
|
98 |
+
3,
|
99 |
+
1,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"torch_dtype": "float32",
|
103 |
+
"transformers_version": "4.17.0.dev0",
|
104 |
+
"use_weighted_layer_sum": false,
|
105 |
+
"vocab_size": 3655,
|
106 |
+
"xvector_output_dim": 512
|
107 |
+
}
|
nohup.out
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
1 |
0%| | 0/1 [00:00<?, ?ba/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
0%| | 0/3 [00:00<?, ?ba/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
0%| | 0/37300 [00:00<?, ?it/s]
|
4 |
0%| | 1/37300 [00:02<27:52:51, 2.69s/it]
|
5 |
0%| | 2/37300 [00:05<27:44:40, 2.68s/it]
|
6 |
0%| | 3/37300 [00:07<26:20:20, 2.54s/it]
|
7 |
0%| | 4/37300 [00:10<25:14:13, 2.44s/it]
|
8 |
0%| | 5/37300 [00:12<24:34:00, 2.37s/it]
|
9 |
0%| | 6/37300 [00:14<23:51:17, 2.30s/it]
|
10 |
0%| | 7/37300 [00:16<23:12:30, 2.24s/it]
|
11 |
0%| | 8/37300 [00:18<22:34:15, 2.18s/it]
|
12 |
0%| | 9/37300 [00:20<21:43:40, 2.10s/it]
|
13 |
0%| | 10/37300 [00:22<21:09:24, 2.04s/it]
|
14 |
0%| | 11/37300 [00:24<20:23:14, 1.97s/it]
|
15 |
0%| | 12/37300 [00:26<19:48:38, 1.91s/it]
|
16 |
0%| | 13/37300 [00:27<19:19:05, 1.87s/it]
|
17 |
0%| | 14/37300 [00:29<18:58:02, 1.83s/it]
|
18 |
0%| | 15/37300 [00:31<18:35:09, 1.79s/it]
|
19 |
0%| | 16/37300 [00:32<18:20:58, 1.77s/it]
|
20 |
0%| | 17/37300 [00:34<18:01:00, 1.74s/it]
|
21 |
0%| | 18/37300 [00:36<17:45:52, 1.72s/it]
|
22 |
0%| | 19/37300 [00:37<17:25:44, 1.68s/it]
|
23 |
0%| | 20/37300 [00:39<17:09:19, 1.66s/it]
|
24 |
0%| | 21/37300 [00:41<16:53:34, 1.63s/it]
|
25 |
0%| | 22/37300 [00:42<16:33:49, 1.60s/it]
|
26 |
0%| | 23/37300 [00:44<16:24:45, 1.59s/it]
|
27 |
0%| | 24/37300 [00:45<16:23:26, 1.58s/it]
|
28 |
0%| | 25/37300 [00:47<16:09:47, 1.56s/it]
|
29 |
0%| | 26/37300 [00:48<15:54:32, 1.54s/it]
|
30 |
0%| | 27/37300 [00:50<15:33:01, 1.50s/it]
|
31 |
0%| | 28/37300 [00:51<15:34:21, 1.50s/it]
|
32 |
0%| | 29/37300 [00:53<15:14:30, 1.47s/it]
|
33 |
0%| | 30/37300 [00:54<14:53:39, 1.44s/it]
|
34 |
0%| | 31/37300 [00:55<14:28:05, 1.40s/it]
|
35 |
0%| | 32/37300 [00:56<14:10:28, 1.37s/it]
|
36 |
0%| | 33/37300 [00:58<13:55:51, 1.35s/it]
|
37 |
0%| | 34/37300 [00:59<13:37:37, 1.32s/it]
|
38 |
0%| | 35/37300 [01:00<13:25:49, 1.30s/it]
|
39 |
0%| | 36/37300 [01:01<13:05:22, 1.26s/it]
|
40 |
0%| | 37/37300 [01:03<12:58:00, 1.25s/it]
|
41 |
0%| | 38/37300 [01:04<12:54:34, 1.25s/it]
|
42 |
0%| | 39/37300 [01:05<12:45:42, 1.23s/it]
|
43 |
0%| | 40/37300 [01:06<12:35:43, 1.22s/it]
|
44 |
0%| | 41/37300 [01:07<12:29:24, 1.21s/it]
|
45 |
0%| | 42/37300 [01:09<12:24:22, 1.20s/it]
|
46 |
0%| | 43/37300 [01:10<12:09:58, 1.18s/it]
|
47 |
0%| | 44/37300 [01:11<11:54:30, 1.15s/it]
|
48 |
0%| | 45/37300 [01:12<11:37:04, 1.12s/it]
|
49 |
0%| | 46/37300 [01:13<11:22:02, 1.10s/it]
|
50 |
0%| | 47/37300 [01:14<11:10:26, 1.08s/it]
|
51 |
0%| | 48/37300 [01:15<10:59:46, 1.06s/it]
|
52 |
0%| | 49/37300 [01:16<10:45:22, 1.04s/it]
|
53 |
0%| | 50/37300 [01:17<10:30:56, 1.02s/it]
|
54 |
0%| | 51/37300 [01:20<15:17:02, 1.48s/it]
|
55 |
0%| | 52/37300 [01:22<18:47:59, 1.82s/it]
|
56 |
0%| | 53/37300 [01:25<20:33:46, 1.99s/it]
|
57 |
0%| | 54/37300 [01:27<21:31:50, 2.08s/it]
|
58 |
0%| | 55/37300 [01:29<21:58:23, 2.12s/it]
|
59 |
0%| | 56/37300 [01:31<22:08:50, 2.14s/it]
|
60 |
0%| | 57/37300 [01:33<22:03:41, 2.13s/it]
|
61 |
0%| | 58/37300 [01:35<21:56:25, 2.12s/it]
|
62 |
0%| | 59/37300 [01:38<21:45:05, 2.10s/it]
|
63 |
0%| | 60/37300 [01:39<21:12:29, 2.05s/it]
|
64 |
0%| | 61/37300 [01:41<20:39:19, 2.00s/it]
|
65 |
0%| | 62/37300 [01:43<20:08:46, 1.95s/it]
|
66 |
0%| | 63/37300 [01:45<19:34:13, 1.89s/it]
|
67 |
0%| | 64/37300 [01:47<19:05:14, 1.85s/it]
|
68 |
0%| | 65/37300 [01:48<18:38:25, 1.80s/it]
|
69 |
0%| | 66/37300 [01:50<18:18:23, 1.77s/it]
|
70 |
0%| | 67/37300 [01:52<17:59:04, 1.74s/it]
|
71 |
0%| | 68/37300 [01:53<17:39:44, 1.71s/it]
|
72 |
0%| | 69/37300 [01:55<17:23:14, 1.68s/it]
|
73 |
0%| | 70/37300 [01:57<17:14:44, 1.67s/it]
|
74 |
0%| | 71/37300 [01:58<16:47:48, 1.62s/it]
|
75 |
0%| | 72/37300 [02:00<16:31:57, 1.60s/it]
|
76 |
0%| | 73/37300 [02:01<16:13:28, 1.57s/it]
|
77 |
0%| | 74/37300 [02:03<16:03:25, 1.55s/it]
|
78 |
0%| | 75/37300 [02:04<15:45:47, 1.52s/it]
|
79 |
0%| | 76/37300 [02:06<15:34:44, 1.51s/it]
|
80 |
0%| | 77/37300 [02:07<15:33:55, 1.51s/it]
|
81 |
0%| | 78/37300 [02:09<15:20:42, 1.48s/it]
|
82 |
0%| | 79/37300 [02:10<15:07:12, 1.46s/it]
|
83 |
0%| | 80/37300 [02:11<14:56:02, 1.44s/it]
|
84 |
0%| | 81/37300 [02:13<14:43:08, 1.42s/it]
|
85 |
0%| | 82/37300 [02:14<14:20:35, 1.39s/it]
|
86 |
0%| | 83/37300 [02:15<13:58:56, 1.35s/it]
|
87 |
0%| | 84/37300 [02:17<13:46:27, 1.33s/it]
|
88 |
0%| | 85/37300 [02:18<13:32:48, 1.31s/it]
|
89 |
0%| | 86/37300 [02:19<13:15:56, 1.28s/it]
|
90 |
0%| | 87/37300 [02:20<13:06:35, 1.27s/it]
|
91 |
0%| | 88/37300 [02:22<13:08:02, 1.27s/it]
|
92 |
0%| | 89/37300 [02:23<13:17:08, 1.29s/it]
|
93 |
0%| | 90/37300 [02:24<13:10:15, 1.27s/it]
|
94 |
0%| | 91/37300 [02:25<12:51:09, 1.24s/it]
|
95 |
0%| | 92/37300 [02:26<12:38:10, 1.22s/it]
|
96 |
0%| | 93/37300 [02:28<12:31:19, 1.21s/it]
|
97 |
0%| | 94/37300 [02:29<12:20:50, 1.19s/it]
|
98 |
0%| | 95/37300 [02:30<12:04:08, 1.17s/it]
|
99 |
0%| | 96/37300 [02:31<11:58:35, 1.16s/it]
|
100 |
0%| | 97/37300 [02:32<11:51:50, 1.15s/it]
|
101 |
0%| | 98/37300 [02:33<11:57:28, 1.16s/it]
|
102 |
0%| | 99/37300 [02:34<11:27:51, 1.11s/it]
|
103 |
0%| | 100/37300 [02:35<10:59:19, 1.06s/it]
|
104 |
|
105 |
0%| | 100/37300 [02:35<10:59:19, 1.06s/it]
|
106 |
0%| | 101/37300 [02:38<15:45:32, 1.53s/it]
|
107 |
0%| | 102/37300 [02:40<18:45:01, 1.81s/it]
|
108 |
0%| | 103/37300 [02:43<20:54:43, 2.02s/it]
|
109 |
0%| | 104/37300 [02:45<21:57:30, 2.13s/it]
|
110 |
0%| | 105/37300 [02:48<22:31:20, 2.18s/it]
|
111 |
0%| | 106/37300 [02:50<22:43:03, 2.20s/it]
|
112 |
0%| | 107/37300 [02:52<22:35:22, 2.19s/it]
|
113 |
0%| | 108/37300 [02:54<22:28:01, 2.17s/it]
|
114 |
0%| | 109/37300 [02:56<22:07:51, 2.14s/it]
|
115 |
0%| | 110/37300 [02:58<21:38:46, 2.10s/it]
|
116 |
0%| | 111/37300 [03:00<20:54:47, 2.02s/it]
|
117 |
0%| | 112/37300 [03:02<20:20:21, 1.97s/it]
|
118 |
0%| | 113/37300 [03:04<19:49:19, 1.92s/it]
|
119 |
0%| | 114/37300 [03:05<19:12:13, 1.86s/it]
|
120 |
0%| | 115/37300 [03:07<18:44:03, 1.81s/it]
|
121 |
0%| | 116/37300 [03:09<18:22:26, 1.78s/it]
|
122 |
0%| | 117/37300 [03:11<18:04:39, 1.75s/it]
|
123 |
0%| | 118/37300 [03:12<17:47:09, 1.72s/it]
|
124 |
0%| | 119/37300 [03:14<17:27:27, 1.69s/it]
|
125 |
0%| | 120/37300 [03:15<17:20:24, 1.68s/it]
|
126 |
0%| | 121/37300 [03:17<16:59:01, 1.64s/it]
|
127 |
0%| | 122/37300 [03:19<16:42:22, 1.62s/it]
|
128 |
0%| | 123/37300 [03:20<16:21:49, 1.58s/it]
|
129 |
0%| | 124/37300 [03:22<16:05:35, 1.56s/it]
|
130 |
0%| | 125/37300 [03:23<15:48:51, 1.53s/it]
|
131 |
0%| | 126/37300 [03:24<15:35:04, 1.51s/it]
|
132 |
0%| | 127/37300 [03:26<15:18:16, 1.48s/it]
|
133 |
0%| | 128/37300 [03:27<15:03:16, 1.46s/it]
|
134 |
0%| | 129/37300 [03:29<14:59:34, 1.45s/it]
|
135 |
0%| | 130/37300 [03:30<14:46:24, 1.43s/it]
|
136 |
0%| | 131/37300 [03:31<14:31:11, 1.41s/it]
|
137 |
0%| | 132/37300 [03:33<14:15:12, 1.38s/it]
|
138 |
0%| | 133/37300 [03:34<13:58:47, 1.35s/it]
|
139 |
0%| | 134/37300 [03:35<13:42:15, 1.33s/it]
|
140 |
0%| | 135/37300 [03:37<13:30:43, 1.31s/it]
|
141 |
0%| | 136/37300 [03:38<13:19:58, 1.29s/it]
|
142 |
0%| | 137/37300 [03:39<13:06:24, 1.27s/it]
|
143 |
0%| | 138/37300 [03:40<12:58:20, 1.26s/it]
|
144 |
0%| | 139/37300 [03:42<12:48:51, 1.24s/it]
|
145 |
0%| | 140/37300 [03:43<12:39:14, 1.23s/it]
|
146 |
0%| | 141/37300 [03:44<12:31:25, 1.21s/it]
|
147 |
0%| | 142/37300 [03:45<12:21:48, 1.20s/it]
|
148 |
0%| | 143/37300 [03:46<12:11:52, 1.18s/it]
|
149 |
0%| | 144/37300 [03:47<12:02:04, 1.17s/it]
|
150 |
0%| | 145/37300 [03:48<11:45:59, 1.14s/it]
|
151 |
0%| | 146/37300 [03:49<11:28:24, 1.11s/it]
|
152 |
0%| | 147/37300 [03:50<11:14:51, 1.09s/it]
|
153 |
0%| | 148/37300 [03:52<11:00:52, 1.07s/it]
|
154 |
0%| | 149/37300 [03:53<10:48:50, 1.05s/it]
|
155 |
0%| | 150/37300 [03:54<10:38:20, 1.03s/it]
|
156 |
0%| | 151/37300 [03:56<15:47:29, 1.53s/it]
|
157 |
0%| | 152/37300 [03:59<18:55:25, 1.83s/it]
|
158 |
0%| | 153/37300 [04:01<20:26:23, 1.98s/it]
|
159 |
0%| | 154/37300 [04:03<21:20:13, 2.07s/it]
|
160 |
0%| | 155/37300 [04:06<21:41:01, 2.10s/it]
|
161 |
0%| | 156/37300 [04:08<21:49:57, 2.12s/it]
|
162 |
0%| | 157/37300 [04:10<21:52:03, 2.12s/it]
|
163 |
0%| | 158/37300 [04:12<21:41:55, 2.10s/it]
|
164 |
0%| | 159/37300 [04:14<21:18:45, 2.07s/it]
|
165 |
0%| | 160/37300 [04:16<20:51:07, 2.02s/it]
|
166 |
0%| | 161/37300 [04:18<20:24:13, 1.98s/it]
|
167 |
0%| | 162/37300 [04:19<20:01:35, 1.94s/it]
|
168 |
0%| | 163/37300 [04:21<19:33:34, 1.90s/it]
|
169 |
0%| | 164/37300 [04:23<19:05:20, 1.85s/it]
|
170 |
0%| | 165/37300 [04:25<18:42:30, 1.81s/it]
|
171 |
0%| | 166/37300 [04:26<18:20:56, 1.78s/it]
|
172 |
0%| | 167/37300 [04:28<17:59:54, 1.74s/it]
|
173 |
0%| | 168/37300 [04:30<17:40:57, 1.71s/it]
|
174 |
0%| | 169/37300 [04:31<17:23:10, 1.69s/it]
|
175 |
0%| | 170/37300 [04:33<17:06:21, 1.66s/it]
|
176 |
0%| | 171/37300 [04:35<16:55:37, 1.64s/it]
|
177 |
0%| | 172/37300 [04:36<16:37:58, 1.61s/it]
|
178 |
0%| | 173/37300 [04:38<16:18:04, 1.58s/it]
|
179 |
0%| | 174/37300 [04:39<16:04:23, 1.56s/it]
|
180 |
0%| | 175/37300 [04:41<15:48:34, 1.53s/it]
|
181 |
0%| | 176/37300 [04:42<15:34:02, 1.51s/it]
|
182 |
0%| | 177/37300 [04:43<15:21:04, 1.49s/it]
|
183 |
0%| | 178/37300 [04:45<15:07:04, 1.47s/it]
|
184 |
0%| | 179/37300 [04:46<14:52:21, 1.44s/it]
|
185 |
0%| | 180/37300 [04:48<14:37:16, 1.42s/it]
|
186 |
0%| | 181/37300 [04:49<14:17:20, 1.39s/it]
|
187 |
0%| | 182/37300 [04:50<14:02:50, 1.36s/it]
|
188 |
0%| | 183/37300 [04:52<13:46:55, 1.34s/it]
|
189 |
0%| | 184/37300 [04:53<13:31:47, 1.31s/it]
|
190 |
0%| | 185/37300 [04:54<13:19:05, 1.29s/it]
|
191 |
0%| | 186/37300 [04:55<13:04:14, 1.27s/it]
|
192 |
1%| | 187/37300 [04:56<12:56:13, 1.25s/it]
|
193 |
1%| | 188/37300 [04:58<12:50:37, 1.25s/it]
|
194 |
1%| | 189/37300 [04:59<12:44:06, 1.24s/it]
|
195 |
1%| | 190/37300 [05:00<12:32:33, 1.22s/it]
|
196 |
1%| | 191/37300 [05:01<12:26:03, 1.21s/it]
|
197 |
1%| | 192/37300 [05:02<12:23:02, 1.20s/it]
|
198 |
1%| | 193/37300 [05:04<12:13:22, 1.19s/it]
|
199 |
1%| | 194/37300 [05:05<11:58:56, 1.16s/it]
|
200 |
1%| | 195/37300 [05:06<11:38:50, 1.13s/it]
|
201 |
1%| | 196/37300 [05:07<11:23:43, 1.11s/it]
|
202 |
1%| | 197/37300 [05:08<11:11:30, 1.09s/it]
|
203 |
1%| | 198/37300 [05:09<10:57:12, 1.06s/it]
|
204 |
1%| | 199/37300 [05:10<10:44:39, 1.04s/it]
|
205 |
1%| | 200/37300 [05:11<10:33:35, 1.02s/it]
|
206 |
|
207 |
1%| | 200/37300 [05:11<10:33:35, 1.02s/it]
|
208 |
1%| | 201/37300 [05:13<15:31:47, 1.51s/it]
|
209 |
1%| | 202/37300 [05:16<18:41:01, 1.81s/it]
|
210 |
1%| | 203/37300 [05:18<20:25:35, 1.98s/it]
|
211 |
1%| | 204/37300 [05:21<21:20:46, 2.07s/it]
|
212 |
1%| | 205/37300 [05:23<21:47:59, 2.12s/it]
|
213 |
1%| | 206/37300 [05:25<21:57:05, 2.13s/it]
|
214 |
1%| | 207/37300 [05:27<21:46:58, 2.11s/it]
|
215 |
1%| | 208/37300 [05:29<21:27:39, 2.08s/it]
|
216 |
1%| | 209/37300 [05:31<21:09:13, 2.05s/it]
|
217 |
1%| | 210/37300 [05:33<20:38:21, 2.00s/it]
|
218 |
1%| | 211/37300 [05:35<20:06:57, 1.95s/it]
|
219 |
1%| | 212/37300 [05:37<19:39:36, 1.91s/it]
|
220 |
1%| | 213/37300 [05:38<19:13:12, 1.87s/it]
|
221 |
1%| | 214/37300 [05:40<18:48:22, 1.83s/it]
|
222 |
1%| | 215/37300 [05:42<18:28:07, 1.79s/it]
|
223 |
1%| | 216/37300 [05:44<18:11:30, 1.77s/it]
|
224 |
1%| | 217/37300 [05:45<17:56:19, 1.74s/it]
|
225 |
1%| | 218/37300 [05:47<17:38:08, 1.71s/it]
|
226 |
1%| | 219/37300 [05:49<17:21:49, 1.69s/it]
|
227 |
1%| | 220/37300 [05:50<17:03:17, 1.66s/it]
|
228 |
1%| | 221/37300 [05:52<16:48:03, 1.63s/it]
|
229 |
1%| | 222/37300 [05:53<16:31:37, 1.60s/it]
|
230 |
1%| | 223/37300 [05:55<16:13:34, 1.58s/it]
|
231 |
1%| | 224/37300 [05:56<15:51:53, 1.54s/it]
|
232 |
1%| | 225/37300 [05:58<15:38:33, 1.52s/it]
|
233 |
1%| | 226/37300 [05:59<15:27:25, 1.50s/it]
|
234 |
1%| | 227/37300 [06:01<15:12:26, 1.48s/it]
|
235 |
1%| | 228/37300 [06:02<14:57:47, 1.45s/it]
|
236 |
1%| | 229/37300 [06:03<14:52:51, 1.45s/it]
|
237 |
1%| | 230/37300 [06:05<14:39:29, 1.42s/it]
|
238 |
1%| | 231/37300 [06:06<14:21:08, 1.39s/it]
|
239 |
1%| | 232/37300 [06:07<14:05:47, 1.37s/it]
|
240 |
1%| | 233/37300 [06:09<13:51:04, 1.35s/it]
|
241 |
1%| | 234/37300 [06:10<13:37:55, 1.32s/it]
|
242 |
1%| | 235/37300 [06:11<13:24:52, 1.30s/it]
|
243 |
1%| | 236/37300 [06:12<13:16:21, 1.29s/it]
|
244 |
1%| | 237/37300 [06:14<13:04:33, 1.27s/it]
|
245 |
1%| | 238/37300 [06:15<12:51:23, 1.25s/it]
|
246 |
1%| | 239/37300 [06:16<12:39:44, 1.23s/it]
|
247 |
1%| | 240/37300 [06:17<12:28:34, 1.21s/it]
|
248 |
1%| | 241/37300 [06:18<12:18:29, 1.20s/it]
|
249 |
1%| | 242/37300 [06:20<12:10:01, 1.18s/it]
|
250 |
1%| | 243/37300 [06:21<11:57:15, 1.16s/it]
|
251 |
1%| | 244/37300 [06:22<11:42:43, 1.14s/it]
|
252 |
1%| | 245/37300 [06:23<11:29:25, 1.12s/it]
|
253 |
1%| | 246/37300 [06:24<11:16:00, 1.09s/it]
|
254 |
1%| | 247/37300 [06:25<11:04:52, 1.08s/it]
|
255 |
1%| | 248/37300 [06:26<10:52:38, 1.06s/it]
|
256 |
1%| | 249/37300 [06:27<10:42:50, 1.04s/it]
|
257 |
1%| | 250/37300 [06:28<10:29:23, 1.02s/it]
|
258 |
1%| | 251/37300 [06:31<15:29:58, 1.51s/it]
|
259 |
1%| | 252/37300 [06:33<18:28:44, 1.80s/it]
|
260 |
1%| | 253/37300 [06:35<20:06:55, 1.95s/it]
|
261 |
1%| | 254/37300 [06:38<21:04:00, 2.05s/it]
|
262 |
1%| | 255/37300 [06:40<21:34:26, 2.10s/it]
|
263 |
1%| | 256/37300 [06:42<21:45:33, 2.11s/it]
|
264 |
1%| | 257/37300 [06:44<21:38:14, 2.10s/it]
|
265 |
1%| | 258/37300 [06:46<21:19:51, 2.07s/it]
|
266 |
1%| | 259/37300 [06:48<20:58:49, 2.04s/it]
|
267 |
1%| | 260/37300 [06:50<20:38:07, 2.01s/it]
|
268 |
1%| | 261/37300 [06:52<20:03:34, 1.95s/it]
|
269 |
1%| | 262/37300 [06:54<19:34:28, 1.90s/it]
|
270 |
1%| | 263/37300 [06:55<19:09:15, 1.86s/it]
|
271 |
1%| | 264/37300 [06:57<18:43:50, 1.82s/it]
|
272 |
1%| | 265/37300 [06:59<18:23:06, 1.79s/it]
|
273 |
1%| | 266/37300 [07:00<18:02:27, 1.75s/it]
|
274 |
1%| | 267/37300 [07:02<17:41:46, 1.72s/it]
|
275 |
1%| | 268/37300 [07:04<17:21:27, 1.69s/it]
|
276 |
1%| | 269/37300 [07:05<17:02:20, 1.66s/it]
|
277 |
1%| | 270/37300 [07:07<16:41:34, 1.62s/it]
|
278 |
1%| | 271/37300 [07:08<16:24:24, 1.60s/it]
|
279 |
1%| | 272/37300 [07:10<16:10:44, 1.57s/it]
|
280 |
1%| | 273/37300 [07:11<15:58:13, 1.55s/it]
|
281 |
1%| | 274/37300 [07:13<15:48:52, 1.54s/it]
|
282 |
1%| | 275/37300 [07:14<15:25:32, 1.50s/it]
|
283 |
1%| | 276/37300 [07:16<15:19:58, 1.49s/it]
|
284 |
1%| | 277/37300 [07:17<15:09:44, 1.47s/it]
|
285 |
1%| | 278/37300 [07:19<14:54:52, 1.45s/it]
|
286 |
1%| | 279/37300 [07:20<14:38:45, 1.42s/it]
|
287 |
1%| | 280/37300 [07:21<14:25:20, 1.40s/it]
|
288 |
1%| | 281/37300 [07:23<14:02:50, 1.37s/it]
|
289 |
1%| | 282/37300 [07:24<13:51:04, 1.35s/it]
|
290 |
1%| | 283/37300 [07:25<13:40:56, 1.33s/it]
|
291 |
1%| | 284/37300 [07:26<13:29:15, 1.31s/it]
|
292 |
1%| | 285/37300 [07:28<13:18:39, 1.29s/it]
|
293 |
1%| | 286/37300 [07:29<13:08:10, 1.28s/it]
|
294 |
1%| | 287/37300 [07:30<12:59:39, 1.26s/it]
|
295 |
1%| | 288/37300 [07:31<12:52:29, 1.25s/it]
|
296 |
1%| | 289/37300 [07:33<12:45:20, 1.24s/it]
|
297 |
1%| | 290/37300 [07:34<12:36:16, 1.23s/it]
|
298 |
1%| | 291/37300 [07:35<12:24:28, 1.21s/it]
|
299 |
1%| | 292/37300 [07:36<12:12:44, 1.19s/it]
|
300 |
1%| | 293/37300 [07:37<11:58:28, 1.16s/it]
|
301 |
1%| | 294/37300 [07:38<11:40:55, 1.14s/it]
|
302 |
1%| | 295/37300 [07:39<11:26:52, 1.11s/it]
|
303 |
1%| | 296/37300 [07:40<11:13:02, 1.09s/it]
|
304 |
1%| | 297/37300 [07:41<11:04:15, 1.08s/it]
|
305 |
1%| | 298/37300 [07:42<11:03:23, 1.08s/it]
|
306 |
1%| | 299/37300 [07:44<11:00:40, 1.07s/it]
|
307 |
1%| | 300/37300 [07:45<10:55:45, 1.06s/it]
|
308 |
|
309 |
1%| | 300/37300 [07:45<10:55:45, 1.06s/it]
|
310 |
1%| | 301/37300 [07:47<16:10:58, 1.57s/it]
|
311 |
1%| | 302/37300 [07:50<19:12:13, 1.87s/it]
|
312 |
1%| | 303/37300 [07:52<20:47:24, 2.02s/it]
|
313 |
1%| | 304/37300 [07:55<21:33:25, 2.10s/it]
|
314 |
1%| | 305/37300 [07:57<21:50:10, 2.12s/it]
|
315 |
1%| | 306/37300 [07:59<21:47:30, 2.12s/it]
|
316 |
1%| | 307/37300 [08:01<21:32:10, 2.10s/it]
|
317 |
1%| | 308/37300 [08:03<21:16:45, 2.07s/it]
|
318 |
1%| | 309/37300 [08:05<20:45:55, 2.02s/it]
|
319 |
1%| | 310/37300 [08:07<20:20:14, 1.98s/it]
|
320 |
1%| | 311/37300 [08:09<19:54:30, 1.94s/it]
|
321 |
1%| | 312/37300 [08:10<19:26:14, 1.89s/it]
|
322 |
1%| | 313/37300 [08:12<19:03:03, 1.85s/it]
|
323 |
1%| | 314/37300 [08:14<18:36:53, 1.81s/it]
|
324 |
1%| | 315/37300 [08:15<18:18:38, 1.78s/it]
|
325 |
1%| | 316/37300 [08:17<17:59:06, 1.75s/it]
|
326 |
1%| | 317/37300 [08:19<17:42:03, 1.72s/it]
|
327 |
1%| | 318/37300 [08:20<17:25:54, 1.70s/it]
|
328 |
1%| | 319/37300 [08:22<17:09:21, 1.67s/it]
|
329 |
1%| | 320/37300 [08:24<16:58:56, 1.65s/it]
|
330 |
1%| | 321/37300 [08:25<16:45:02, 1.63s/it]
|
331 |
1%| | 322/37300 [08:27<16:20:16, 1.59s/it]
|
332 |
1%| | 323/37300 [08:28<15:56:38, 1.55s/it]
|
333 |
1%| | 324/37300 [08:30<15:37:13, 1.52s/it]
|
334 |
1%| | 325/37300 [08:31<15:21:09, 1.49s/it]
|
335 |
1%| | 326/37300 [08:33<15:06:23, 1.47s/it]
|
336 |
1%| | 327/37300 [08:34<14:57:39, 1.46s/it]
|
337 |
1%| | 328/37300 [08:35<14:49:20, 1.44s/it]
|
338 |
1%| | 329/37300 [08:37<14:39:49, 1.43s/it]
|
339 |
1%| | 330/37300 [08:38<14:27:18, 1.41s/it]
|
340 |
1%| | 331/37300 [08:39<13:59:32, 1.36s/it]
|
341 |
1%| | 332/37300 [08:41<13:33:00, 1.32s/it]
|
342 |
1%| | 333/37300 [08:42<13:10:45, 1.28s/it]
|
343 |
1%| | 334/37300 [08:43<12:51:01, 1.25s/it]
|
344 |
1%| | 335/37300 [08:44<12:44:14, 1.24s/it]
|
345 |
1%| | 336/37300 [08:45<12:40:36, 1.23s/it]
|
346 |
1%| | 337/37300 [08:47<12:35:46, 1.23s/it]
|
347 |
1%| | 338/37300 [08:48<12:31:18, 1.22s/it]
|
348 |
1%| | 339/37300 [08:49<12:28:38, 1.22s/it]
|
349 |
1%| | 340/37300 [08:50<12:20:34, 1.20s/it]
|
350 |
1%| | 341/37300 [08:51<12:14:34, 1.19s/it]
|
351 |
1%| | 342/37300 [08:53<12:11:17, 1.19s/it]
|
352 |
1%| | 343/37300 [08:54<12:02:42, 1.17s/it]
|
353 |
1%| | 344/37300 [08:55<11:49:23, 1.15s/it]
|
354 |
1%| | 345/37300 [08:56<11:34:14, 1.13s/it]
|
355 |
1%| | 346/37300 [08:57<11:24:38, 1.11s/it]
|
356 |
1%| | 347/37300 [08:58<11:17:38, 1.10s/it]
|
357 |
1%| | 348/37300 [08:59<11:07:13, 1.08s/it]
|
358 |
1%| | 349/37300 [09:00<11:01:01, 1.07s/it]
|
359 |
1%| | 350/37300 [09:01<10:51:43, 1.06s/it]
|
360 |
1%| | 351/37300 [09:04<15:53:24, 1.55s/it]
|
361 |
1%| | 352/37300 [09:06<18:25:47, 1.80s/it]
|
362 |
1%| | 353/37300 [09:08<19:34:30, 1.91s/it]
|
363 |
1%| | 354/37300 [09:10<19:51:19, 1.93s/it]
|
364 |
1%| | 355/37300 [09:12<19:55:51, 1.94s/it]
|
365 |
1%| | 356/37300 [09:14<19:22:22, 1.89s/it]
|
366 |
1%| | 357/37300 [09:16<18:51:28, 1.84s/it]
|
367 |
1%| | 358/37300 [09:17<18:19:14, 1.79s/it]
|
368 |
1%| | 359/37300 [09:19<17:44:58, 1.73s/it]
|
369 |
1%| | 360/37300 [09:21<17:08:49, 1.67s/it]
|
370 |
1%| | 361/37300 [09:22<16:34:13, 1.61s/it]
|
371 |
1%| | 362/37300 [09:24<16:03:16, 1.56s/it]
|
372 |
1%| | 363/37300 [09:25<15:38:10, 1.52s/it]
|
373 |
1%| | 364/37300 [09:26<15:09:52, 1.48s/it]
|
374 |
1%| | 365/37300 [09:28<14:35:35, 1.42s/it]
|
375 |
1%| | 366/37300 [09:29<14:03:17, 1.37s/it]
|
376 |
1%| | 367/37300 [09:30<13:37:19, 1.33s/it]
|
377 |
1%| | 368/37300 [09:31<13:13:03, 1.29s/it]
|
378 |
1%| | 369/37300 [09:32<12:51:08, 1.25s/it]
|
379 |
1%| | 370/37300 [09:34<12:38:03, 1.23s/it]
|
380 |
1%| | 371/37300 [09:35<12:28:26, 1.22s/it]
|
381 |
1%| | 372/37300 [09:36<12:14:34, 1.19s/it]
|
382 |
1%| | 373/37300 [09:37<12:02:00, 1.17s/it]
|
383 |
1%| | 374/37300 [09:40<18:23:02, 1.79s/it]
|
384 |
1%| | 375/37300 [09:43<21:07:36, 2.06s/it]
|
385 |
1%| | 376/37300 [09:46<22:35:22, 2.20s/it]
|
386 |
1%| | 377/37300 [09:48<23:14:10, 2.27s/it]
|
387 |
1%| | 378/37300 [09:50<23:30:37, 2.29s/it]
|
388 |
1%| | 379/37300 [09:53<23:30:25, 2.29s/it]
|
389 |
1%| | 380/37300 [09:55<23:05:48, 2.25s/it]
|
390 |
1%| | 381/37300 [09:57<22:25:43, 2.19s/it]
|
391 |
1%| | 382/37300 [09:59<21:33:51, 2.10s/it]
|
392 |
1%| | 383/37300 [10:01<20:54:02, 2.04s/it]
|
393 |
1%| | 384/37300 [10:02<20:13:07, 1.97s/it]
|
394 |
1%| | 385/37300 [10:04<19:38:56, 1.92s/it]
|
395 |
1%| | 386/37300 [10:06<19:08:45, 1.87s/it]
|
396 |
1%| | 387/37300 [10:08<18:41:06, 1.82s/it]
|
397 |
1%| | 388/37300 [10:09<18:14:14, 1.78s/it]
|
398 |
1%| | 389/37300 [10:11<17:53:33, 1.75s/it]
|
399 |
1%| | 390/37300 [10:13<17:33:59, 1.71s/it]
|
400 |
1%| | 391/37300 [10:14<17:23:13, 1.70s/it]
|
401 |
1%| | 392/37300 [10:16<17:04:20, 1.67s/it]
|
402 |
1%| | 393/37300 [10:17<16:42:16, 1.63s/it]
|
403 |
1%| | 394/37300 [10:19<16:25:13, 1.60s/it]
|
404 |
1%| | 395/37300 [10:21<16:16:03, 1.59s/it]
|
405 |
1%| | 396/37300 [10:22<15:51:12, 1.55s/it]
|
406 |
1%| | 397/37300 [10:23<15:31:56, 1.52s/it]
|
407 |
1%| | 398/37300 [10:25<15:21:09, 1.50s/it]
|
408 |
1%| | 399/37300 [10:26<15:11:11, 1.48s/it]
|
409 |
1%| | 400/37300 [10:28<15:00:01, 1.46s/it]
|
410 |
|
411 |
1%| | 400/37300 [10:28<15:00:01, 1.46s/it]
|
412 |
1%| | 401/37300 [10:29<14:47:32, 1.44s/it]
|
413 |
1%| | 402/37300 [10:31<14:38:28, 1.43s/it]
|
414 |
1%| | 403/37300 [10:32<14:24:39, 1.41s/it]
|
415 |
1%| | 404/37300 [10:33<14:03:43, 1.37s/it]
|
416 |
1%| | 405/37300 [10:34<13:52:50, 1.35s/it]
|
417 |
1%| | 406/37300 [10:36<13:39:16, 1.33s/it]
|
418 |
1%| | 407/37300 [10:37<13:23:59, 1.31s/it]
|
419 |
1%| | 408/37300 [10:38<13:13:51, 1.29s/it]
|
420 |
1%| | 409/37300 [10:39<13:00:44, 1.27s/it]
|
421 |
1%| | 410/37300 [10:41<13:07:06, 1.28s/it]
|
422 |
1%| | 411/37300 [10:42<13:04:49, 1.28s/it]
|
423 |
1%| | 412/37300 [10:43<12:59:21, 1.27s/it]
|
424 |
1%| | 413/37300 [10:45<12:54:01, 1.26s/it]
|
425 |
1%| | 414/37300 [10:46<12:36:07, 1.23s/it]
|
426 |
1%| | 415/37300 [10:47<12:23:33, 1.21s/it]
|
427 |
1%| | 416/37300 [10:48<12:13:15, 1.19s/it]
|
428 |
1%| | 417/37300 [10:49<11:52:20, 1.16s/it]
|
429 |
1%| | 418/37300 [10:50<11:43:37, 1.14s/it]
|
430 |
1%| | 419/37300 [10:51<11:26:02, 1.12s/it]
|
431 |
1%| | 420/37300 [10:52<11:09:22, 1.09s/it]
|
432 |
1%| | 421/37300 [10:53<10:54:00, 1.06s/it]
|
433 |
1%| | 422/37300 [10:54<10:38:28, 1.04s/it]
|
434 |
1%| | 423/37300 [10:55<10:23:41, 1.01s/it]
|
435 |
1%| | 424/37300 [10:58<15:23:42, 1.50s/it]
|
436 |
1%| | 425/37300 [11:00<18:33:47, 1.81s/it]
|
437 |
1%| | 426/37300 [11:03<20:13:15, 1.97s/it]
|
438 |
1%| | 427/37300 [11:05<21:18:42, 2.08s/it]
|
439 |
1%| | 428/37300 [11:07<21:46:07, 2.13s/it]
|
440 |
1%| | 429/37300 [11:09<21:49:41, 2.13s/it]
|
441 |
1%| | 430/37300 [11:12<21:44:41, 2.12s/it]
|
442 |
1%| | 431/37300 [11:14<21:30:55, 2.10s/it]
|
443 |
1%| | 432/37300 [11:16<21:14:23, 2.07s/it]
|
444 |
1%| | 433/37300 [11:18<20:43:34, 2.02s/it]
|
445 |
1%| | 434/37300 [11:19<20:18:57, 1.98s/it]
|
446 |
1%| | 435/37300 [11:21<19:47:27, 1.93s/it]
|
447 |
1%| | 436/37300 [11:23<19:22:53, 1.89s/it]
|
448 |
1%| | 437/37300 [11:25<19:00:48, 1.86s/it]
|
449 |
1%| | 438/37300 [11:27<18:51:44, 1.84s/it]
|
450 |
1%| | 439/37300 [11:28<18:27:19, 1.80s/it]
|
451 |
1%| | 440/37300 [11:30<18:08:23, 1.77s/it]
|
452 |
1%| | 441/37300 [11:32<17:47:58, 1.74s/it]
|
453 |
1%| | 442/37300 [11:33<17:31:46, 1.71s/it]
|
454 |
1%| | 443/37300 [11:35<17:14:11, 1.68s/it]
|
455 |
1%| | 444/37300 [11:37<16:54:51, 1.65s/it]
|
456 |
1%| | 445/37300 [11:38<16:40:53, 1.63s/it]
|
457 |
1%| | 446/37300 [11:40<16:22:57, 1.60s/it]
|
458 |
1%| | 447/37300 [11:41<16:05:18, 1.57s/it]
|
459 |
1%| | 448/37300 [11:43<15:49:17, 1.55s/it]
|
460 |
1%| | 449/37300 [11:44<15:38:40, 1.53s/it]
|
461 |
1%| | 450/37300 [11:46<15:24:17, 1.50s/it]
|
462 |
1%| | 451/37300 [11:47<15:09:51, 1.48s/it]
|
463 |
1%| | 452/37300 [11:48<14:56:31, 1.46s/it]
|
464 |
1%| | 453/37300 [11:50<14:41:32, 1.44s/it]
|
465 |
1%| | 454/37300 [11:51<14:31:58, 1.42s/it]
|
466 |
1%| | 455/37300 [11:52<14:12:11, 1.39s/it]
|
467 |
1%| | 456/37300 [11:54<13:56:00, 1.36s/it]
|
468 |
1%| | 457/37300 [11:55<13:37:46, 1.33s/it]
|
469 |
1%| | 458/37300 [11:56<13:19:43, 1.30s/it]
|
470 |
1%| | 459/37300 [11:58<13:08:43, 1.28s/it]
|
471 |
1%| | 460/37300 [11:59<12:55:34, 1.26s/it]
|
472 |
1%| | 461/37300 [12:00<12:50:36, 1.26s/it]
|
473 |
1%| | 462/37300 [12:01<12:42:06, 1.24s/it]
|
474 |
1%| | 463/37300 [12:02<12:31:09, 1.22s/it]
|
475 |
1%| | 464/37300 [12:04<12:19:40, 1.20s/it]
|
476 |
1%| | 465/37300 [12:05<12:09:04, 1.19s/it]
|
477 |
1%| | 466/37300 [12:06<11:57:00, 1.17s/it]
|
478 |
1%|▏ | 467/37300 [12:07<11:40:36, 1.14s/it]
|
479 |
1%|▏ | 468/37300 [12:08<11:26:55, 1.12s/it]
|
480 |
1%|▏ | 469/37300 [12:09<11:13:20, 1.10s/it]
|
481 |
1%|▏ | 470/37300 [12:10<11:00:30, 1.08s/it]
|
482 |
1%|▏ | 471/37300 [12:11<10:49:08, 1.06s/it]
|
483 |
1%|▏ | 472/37300 [12:12<10:36:47, 1.04s/it]
|
484 |
1%|▏ | 473/37300 [12:13<10:23:46, 1.02s/it]
|
485 |
1%|▏ | 474/37300 [12:16<15:07:13, 1.48s/it]
|
486 |
1%|▏ | 475/37300 [12:18<18:21:41, 1.80s/it]
|
487 |
1%|▏ | 476/37300 [12:20<20:09:53, 1.97s/it]
|
488 |
1%|▏ | 477/37300 [12:23<21:01:58, 2.06s/it]
|
489 |
1%|▏ | 478/37300 [12:25<21:27:36, 2.10s/it]
|
490 |
1%|▏ | 479/37300 [12:27<21:35:40, 2.11s/it]
|
491 |
1%|▏ | 480/37300 [12:29<21:23:24, 2.09s/it]
|
492 |
1%|▏ | 481/37300 [12:31<21:10:37, 2.07s/it]
|
493 |
1%|▏ | 482/37300 [12:33<20:46:29, 2.03s/it]
|
494 |
1%|▏ | 483/37300 [12:35<20:20:44, 1.99s/it]
|
495 |
1%|▏ | 484/37300 [12:37<19:52:00, 1.94s/it]
|
496 |
1%|▏ | 485/37300 [12:39<19:23:01, 1.90s/it]
|
497 |
1%|▏ | 486/37300 [12:40<19:02:47, 1.86s/it]
|
498 |
1%|▏ | 487/37300 [12:42<18:35:06, 1.82s/it]
|
499 |
1%|▏ | 488/37300 [12:44<18:10:05, 1.78s/it]
|
500 |
1%|▏ | 489/37300 [12:45<17:56:05, 1.75s/it]
|
501 |
1%|▏ | 490/37300 [12:47<17:39:09, 1.73s/it]
|
502 |
1%|▏ | 491/37300 [12:49<17:27:46, 1.71s/it]
|
503 |
1%|▏ | 492/37300 [12:50<17:15:08, 1.69s/it]
|
504 |
1%|▏ | 493/37300 [12:52<16:57:58, 1.66s/it]
|
505 |
1%|▏ | 494/37300 [12:54<16:42:08, 1.63s/it]
|
506 |
1%|▏ | 495/37300 [12:55<16:29:22, 1.61s/it]
|
507 |
1%|▏ | 496/37300 [12:57<16:13:01, 1.59s/it]
|
508 |
1%|▏ | 497/37300 [12:58<15:59:08, 1.56s/it]
|
509 |
1%|▏ | 498/37300 [13:00<15:37:34, 1.53s/it]
|
510 |
1%|▏ | 499/37300 [13:01<15:14:28, 1.49s/it]
|
511 |
1%|▏ | 500/37300 [13:02<14:56:05, 1.46s/it]
|
512 |
|
513 |
1%|▏ | 500/37300 [13:02<14:56:05, 1.46s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
0%| | 0/288 [00:00<?, ?it/s][A
|
|
|
515 |
1%| | 2/288 [00:00<00:39, 7.26it/s][A
|
|
|
516 |
1%| | 3/288 [00:00<01:06, 4.26it/s][A
|
|
|
517 |
1%|▏ | 4/288 [00:00<01:15, 3.75it/s][A
|
|
|
518 |
2%|▏ | 5/288 [00:01<01:13, 3.84it/s][A
|
|
|
519 |
2%|▏ | 6/288 [00:01<01:15, 3.74it/s][A
|
|
|
520 |
2%|▏ | 7/288 [00:01<01:18, 3.57it/s][A
|
|
|
521 |
3%|▎ | 8/288 [00:02<01:15, 3.72it/s][A
|
|
|
522 |
3%|▎ | 9/288 [00:02<01:19, 3.53it/s][A
|
|
|
523 |
3%|▎ | 10/288 [00:02<01:27, 3.17it/s][A
|
|
|
524 |
4%|▍ | 11/288 [00:03<01:29, 3.10it/s][A
|
|
|
525 |
4%|▍ | 12/288 [00:03<01:24, 3.28it/s][A
|
|
|
526 |
5%|▍ | 13/288 [00:03<01:25, 3.21it/s][A
|
|
|
527 |
5%|▍ | 14/288 [00:03<01:24, 3.23it/s][A
|
|
|
528 |
5%|▌ | 15/288 [00:04<01:21, 3.36it/s][A
|
|
|
529 |
6%|▌ | 16/288 [00:04<01:22, 3.30it/s][A
|
|
|
530 |
6%|▌ | 17/288 [00:04<01:21, 3.34it/s][A
|
|
|
531 |
6%|▋ | 18/288 [00:05<01:23, 3.21it/s][A
|
|
|
532 |
7%|▋ | 19/288 [00:05<01:26, 3.12it/s][A
|
|
|
533 |
7%|▋ | 20/288 [00:05<01:23, 3.21it/s][A
|
|
|
534 |
7%|▋ | 21/288 [00:06<01:22, 3.24it/s][A
|
|
|
535 |
8%|▊ | 22/288 [00:06<01:20, 3.30it/s][A
|
|
|
536 |
8%|▊ | 23/288 [00:06<01:22, 3.20it/s][A
|
|
|
537 |
8%|▊ | 24/288 [00:07<01:24, 3.12it/s][A
|
|
|
538 |
9%|▊ | 25/288 [00:07<01:23, 3.15it/s][A
|
|
|
539 |
9%|▉ | 26/288 [00:07<01:27, 2.99it/s][A
|
|
|
540 |
9%|▉ | 27/288 [00:08<01:26, 3.01it/s][A
|
|
|
541 |
10%|▉ | 28/288 [00:08<01:23, 3.11it/s][A
|
|
|
542 |
10%|█ | 29/288 [00:08<01:19, 3.26it/s][A
|
|
|
543 |
10%|█ | 30/288 [00:08<01:11, 3.60it/s][A
|
|
|
544 |
11%|█ | 31/288 [00:09<01:10, 3.66it/s][A
|
|
|
545 |
11%|█ | 32/288 [00:09<01:12, 3.52it/s][A
|
|
|
546 |
11%|█▏ | 33/288 [00:09<01:10, 3.62it/s][A
|
|
|
547 |
12%|█▏ | 34/288 [00:10<01:11, 3.55it/s][A
|
|
|
548 |
12%|█▏ | 35/288 [00:10<01:12, 3.48it/s][A
|
|
|
549 |
12%|█▎ | 36/288 [00:10<01:14, 3.40it/s][A
|
|
|
550 |
13%|█▎ | 37/288 [00:10<01:13, 3.40it/s][A
|
|
|
551 |
13%|█▎ | 38/288 [00:11<01:13, 3.41it/s][A
|
|
|
552 |
14%|█▎ | 39/288 [00:11<01:14, 3.34it/s][A
|
|
|
553 |
14%|█▍ | 40/288 [00:11<01:17, 3.19it/s][A
|
|
|
554 |
14%|█▍ | 41/288 [00:12<01:15, 3.26it/s][A
|
|
|
555 |
15%|█▍ | 42/288 [00:12<01:17, 3.16it/s][A
|
|
|
556 |
15%|█▍ | 43/288 [00:12<01:18, 3.11it/s][A
|
|
|
557 |
15%|█▌ | 44/288 [00:13<01:17, 3.15it/s][A
|
|
|
558 |
16%|█▌ | 45/288 [00:13<01:17, 3.13it/s][A
|
|
|
559 |
16%|█▌ | 46/288 [00:13<01:16, 3.16it/s][A
|
|
|
560 |
16%|█▋ | 47/288 [00:14<01:20, 3.01it/s][A
|
|
|
561 |
17%|█▋ | 48/288 [00:14<01:24, 2.85it/s][A
|
|
|
562 |
17%|█▋ | 49/288 [00:14<01:20, 2.96it/s][A
|
|
|
563 |
17%|█▋ | 50/288 [00:15<01:18, 3.05it/s][A
|
|
|
564 |
18%|█▊ | 51/288 [00:15<01:16, 3.08it/s][A
|
|
|
565 |
18%|█▊ | 52/288 [00:15<01:19, 2.95it/s][A
|
|
|
566 |
18%|█▊ | 53/288 [00:16<01:21, 2.88it/s][A
|
|
|
567 |
19%|█▉ | 54/288 [00:16<01:19, 2.95it/s][A
|
|
|
568 |
19%|█▉ | 55/288 [00:16<01:22, 2.84it/s][A
|
|
|
569 |
19%|█▉ | 56/288 [00:17<01:19, 2.91it/s][A
|
|
|
570 |
20%|█▉ | 57/288 [00:17<01:15, 3.08it/s][A
|
|
|
571 |
20%|██ | 58/288 [00:17<01:10, 3.24it/s][A
|
|
|
572 |
20%|██ | 59/288 [00:18<01:07, 3.37it/s][A
|
|
|
573 |
21%|██ | 60/288 [00:18<01:04, 3.56it/s][A
|
|
|
574 |
21%|██ | 61/288 [00:18<01:08, 3.33it/s][A
|
|
|
575 |
22%|██▏ | 62/288 [00:18<01:08, 3.28it/s][A
|
|
|
576 |
22%|██▏ | 63/288 [00:19<01:09, 3.23it/s][A
|
|
|
577 |
22%|██▏ | 64/288 [00:19<01:07, 3.32it/s][A
|
|
|
578 |
23%|██▎ | 65/288 [00:19<01:10, 3.17it/s][A
|
|
|
579 |
23%|██▎ | 66/288 [00:20<01:11, 3.10it/s][A
|
|
|
580 |
23%|██▎ | 67/288 [00:20<01:09, 3.16it/s][A
|
|
|
581 |
24%|██▎ | 68/288 [00:20<01:11, 3.09it/s][A
|
|
|
582 |
24%|██▍ | 69/288 [00:21<01:12, 3.04it/s][A
|
|
|
583 |
24%|██▍ | 70/288 [00:21<01:10, 3.07it/s][A
|
|
|
584 |
25%|██▍ | 71/288 [00:21<01:13, 2.95it/s][A
|
|
|
585 |
25%|██▌ | 72/288 [00:22<01:16, 2.84it/s][A
|
|
|
586 |
25%|██▌ | 73/288 [00:22<01:14, 2.89it/s][A
|
|
|
587 |
26%|██▌ | 74/288 [00:22<01:14, 2.88it/s][A
|
|
|
588 |
26%|██▌ | 75/288 [00:23<01:14, 2.87it/s][A
|
|
|
589 |
26%|██▋ | 76/288 [00:23<01:10, 2.99it/s][A
|
|
|
590 |
27%|██▋ | 77/288 [00:23<01:10, 2.98it/s][A
|
|
|
591 |
27%|██▋ | 78/288 [00:24<01:09, 3.04it/s][A
|
|
|
592 |
27%|██▋ | 79/288 [00:24<01:07, 3.11it/s][A
|
|
|
593 |
28%|██▊ | 80/288 [00:24<01:05, 3.20it/s][A
|
|
|
594 |
28%|██▊ | 81/288 [00:25<01:07, 3.06it/s][A
|
|
|
595 |
28%|██▊ | 82/288 [00:25<01:05, 3.13it/s][A
|
|
|
596 |
29%|██▉ | 83/288 [00:25<01:05, 3.13it/s][A
|
|
|
597 |
29%|██▉ | 84/288 [00:26<01:00, 3.39it/s][A
|
|
|
598 |
30%|██▉ | 85/288 [00:26<00:58, 3.44it/s][A
|
|
|
599 |
30%|██▉ | 86/288 [00:26<01:02, 3.24it/s][A
|
|
|
600 |
30%|███ | 87/288 [00:27<01:07, 2.99it/s][A
|
|
|
601 |
31%|███ | 88/288 [00:27<01:06, 2.99it/s][A
|
|
|
602 |
31%|███ | 89/288 [00:27<01:04, 3.09it/s][A
|
|
|
603 |
31%|███▏ | 90/288 [00:28<01:02, 3.17it/s][A
|
|
|
604 |
32%|███▏ | 91/288 [00:28<01:03, 3.12it/s][A
|
|
|
605 |
32%|███▏ | 92/288 [00:28<01:02, 3.15it/s][A
|
|
|
606 |
32%|███▏ | 93/288 [00:29<01:03, 3.06it/s][A
|
|
|
607 |
33%|███▎ | 94/288 [00:29<01:02, 3.09it/s][A
|
|
|
608 |
33%|███▎ | 95/288 [00:29<01:02, 3.08it/s][A
|
|
|
609 |
33%|███▎ | 96/288 [00:29<00:58, 3.26it/s][A
|
|
|
610 |
34%|███▎ | 97/288 [00:30<00:56, 3.36it/s][A
|
|
|
611 |
34%|███▍ | 98/288 [00:30<00:58, 3.24it/s][A
|
|
|
612 |
34%|███▍ | 99/288 [00:30<01:00, 3.11it/s][A
|
|
|
613 |
35%|███▍ | 100/288 [00:31<01:05, 2.87it/s][A
|
|
|
614 |
35%|███▌ | 101/288 [00:31<01:03, 2.97it/s][A
|
|
|
615 |
35%|███▌ | 102/288 [00:31<00:59, 3.11it/s][A
|
|
|
616 |
36%|███▌ | 103/288 [00:32<00:58, 3.17it/s][A
|
|
|
617 |
36%|███▌ | 104/288 [00:32<00:58, 3.13it/s][A
|
|
|
618 |
36%|███▋ | 105/288 [00:32<00:55, 3.31it/s][A
|
|
|
619 |
37%|███▋ | 106/288 [00:33<00:57, 3.16it/s][A
|
|
|
620 |
37%|███▋ | 107/288 [00:33<00:57, 3.15it/s][A
|
|
|
621 |
38%|███▊ | 108/288 [00:33<00:57, 3.13it/s][A
|
|
|
622 |
38%|███▊ | 109/288 [00:34<00:57, 3.11it/s][A
|
|
|
623 |
38%|███▊ | 110/288 [00:34<00:56, 3.15it/s][A
|
|
|
624 |
39%|███▊ | 111/288 [00:34<01:02, 2.82it/s][A
|
|
|
625 |
39%|███▉ | 112/288 [00:35<01:01, 2.85it/s][A
|
|
|
626 |
39%|███▉ | 113/288 [00:35<00:59, 2.93it/s][A
|
|
|
627 |
40%|███▉ | 114/288 [00:35<00:58, 2.96it/s][A
|
|
|
628 |
40%|███▉ | 115/288 [00:36<00:56, 3.06it/s][A
|
|
|
629 |
40%|████ | 116/288 [00:36<00:56, 3.02it/s][A
|
|
|
630 |
41%|████ | 117/288 [00:36<00:55, 3.06it/s][A
|
|
|
631 |
41%|████ | 118/288 [00:37<00:52, 3.23it/s][A
|
|
|
632 |
41%|████▏ | 119/288 [00:37<00:53, 3.13it/s][A
|
|
|
633 |
42%|████▏ | 120/288 [00:37<01:00, 2.78it/s][A
|
|
|
634 |
42%|████▏ | 121/288 [00:38<00:56, 2.94it/s][A
|
|
|
635 |
42%|████▏ | 122/288 [00:38<00:51, 3.20it/s][A
|
|
|
636 |
43%|████▎ | 123/288 [00:38<00:54, 3.05it/s][A
|
|
|
637 |
43%|████▎ | 124/288 [00:39<00:53, 3.07it/s][A
|
|
|
638 |
43%|████▎ | 125/288 [00:39<00:52, 3.10it/s][A
|
|
|
639 |
44%|████▍ | 126/288 [00:39<00:54, 2.99it/s][A
|
|
|
640 |
44%|████▍ | 127/288 [00:40<00:52, 3.07it/s][A
|
|
|
641 |
44%|████▍ | 128/288 [00:40<00:51, 3.08it/s][A
|
|
|
642 |
45%|████▍ | 129/288 [00:41<01:05, 2.41it/s][A
|
|
|
643 |
45%|████▌ | 130/288 [00:41<01:01, 2.56it/s][A
|
|
|
644 |
45%|████▌ | 131/288 [00:41<00:57, 2.75it/s][A
|
|
|
645 |
46%|████▌ | 132/288 [00:42<00:55, 2.83it/s][A
|
|
|
646 |
46%|████▌ | 133/288 [00:42<00:55, 2.78it/s][A
|
|
|
647 |
47%|████▋ | 134/288 [00:42<00:55, 2.77it/s][A
|
|
|
648 |
47%|████▋ | 135/288 [00:43<00:53, 2.85it/s][A
|
|
|
649 |
47%|████▋ | 136/288 [00:43<00:51, 2.93it/s][A
|
|
|
650 |
48%|████▊ | 137/288 [00:43<01:01, 2.47it/s][A
|
|
|
651 |
48%|████▊ | 138/288 [00:44<00:58, 2.57it/s][A
|
|
|
652 |
48%|████▊ | 139/288 [00:44<00:55, 2.66it/s][A
|
|
|
653 |
49%|████▊ | 140/288 [00:45<00:53, 2.74it/s][A
|
|
|
654 |
49%|████▉ | 141/288 [00:45<00:53, 2.74it/s][A
|
|
|
655 |
49%|████▉ | 142/288 [00:45<00:50, 2.87it/s][A
|
|
|
656 |
50%|████▉ | 143/288 [00:46<00:50, 2.87it/s][A
|
|
|
657 |
50%|█████ | 144/288 [00:46<00:50, 2.85it/s][A
|
|
|
658 |
50%|█████ | 145/288 [00:46<00:49, 2.88it/s][A
|
|
|
659 |
51%|█████ | 146/288 [00:47<00:47, 3.00it/s][A
|
|
|
660 |
51%|█████ | 147/288 [00:47<00:45, 3.10it/s][A
|
|
|
661 |
51%|█████▏ | 148/288 [00:47<00:45, 3.08it/s][A
|
|
|
662 |
52%|█████▏ | 149/288 [00:47<00:44, 3.10it/s][A
|
|
|
663 |
52%|█████▏ | 150/288 [00:48<00:44, 3.13it/s][A
|
|
|
664 |
52%|█████▏ | 151/288 [00:48<00:49, 2.77it/s][A
|
|
|
665 |
53%|█████▎ | 152/288 [00:49<00:48, 2.82it/s][A
|
|
|
666 |
53%|█████▎ | 153/288 [00:49<00:45, 2.99it/s][A
|
|
|
667 |
53%|█████▎ | 154/288 [00:49<00:45, 2.93it/s][A
|
|
|
668 |
54%|█████▍ | 155/288 [00:50<00:44, 2.96it/s][A
|
|
|
669 |
54%|█████▍ | 156/288 [00:50<00:43, 3.03it/s][A
|
|
|
670 |
55%|███���█▍ | 157/288 [00:50<00:43, 3.03it/s][A
|
|
|
671 |
55%|█████▍ | 158/288 [00:51<00:50, 2.58it/s][A
|
|
|
672 |
55%|█████▌ | 159/288 [00:51<00:47, 2.69it/s][A
|
|
|
673 |
56%|█████▌ | 160/288 [00:51<00:44, 2.88it/s][A
|
|
|
674 |
56%|█████▌ | 161/288 [00:52<00:41, 3.02it/s][A
|
|
|
675 |
56%|█████▋ | 162/288 [00:52<00:40, 3.14it/s][A
|
|
|
676 |
57%|█████▋ | 163/288 [00:52<00:40, 3.09it/s][A
|
|
|
677 |
57%|█████▋ | 164/288 [00:53<00:45, 2.75it/s][A
|
|
|
678 |
57%|█████▋ | 165/288 [00:53<00:43, 2.83it/s][A
|
|
|
679 |
58%|█████▊ | 166/288 [00:53<00:42, 2.87it/s][A
|
|
|
680 |
58%|█████▊ | 167/288 [00:54<00:40, 2.99it/s][A
|
|
|
681 |
58%|█████▊ | 168/288 [00:54<00:40, 2.93it/s][A
|
|
|
682 |
59%|█████▊ | 169/288 [00:54<00:40, 2.94it/s][A
|
|
|
683 |
59%|█████▉ | 170/288 [00:55<00:45, 2.57it/s][A
|
|
|
684 |
59%|█████▉ | 171/288 [00:55<00:43, 2.68it/s][A
|
|
|
685 |
60%|█████▉ | 172/288 [00:56<00:41, 2.79it/s][A
|
|
|
686 |
60%|██████ | 173/288 [00:56<00:40, 2.83it/s][A
|
|
|
687 |
60%|██████ | 174/288 [00:56<00:39, 2.89it/s][A
|
|
|
688 |
61%|██████ | 175/288 [00:57<00:37, 3.01it/s][A
|
|
|
689 |
61%|██████ | 176/288 [00:57<00:51, 2.17it/s][A
|
|
|
690 |
61%|██████▏ | 177/288 [00:58<00:47, 2.36it/s][A
|
|
|
691 |
62%|██████▏ | 178/288 [00:58<00:43, 2.50it/s][A
|
|
|
692 |
62%|██████▏ | 179/288 [00:58<00:40, 2.67it/s][A
|
|
|
693 |
62%|██████▎ | 180/288 [00:59<00:39, 2.77it/s][A
|
|
|
694 |
63%|██████▎ | 181/288 [00:59<00:39, 2.69it/s][A
|
|
|
695 |
63%|██████▎ | 182/288 [00:59<00:39, 2.71it/s][A
|
|
|
696 |
64%|██████▎ | 183/288 [01:00<00:37, 2.82it/s][A
|
|
|
697 |
64%|██████▍ | 184/288 [01:00<00:36, 2.86it/s][A
|
|
|
698 |
64%|██████▍ | 185/288 [01:00<00:35, 2.92it/s][A
|
|
|
699 |
65%|██████▍ | 186/288 [01:01<00:38, 2.62it/s][A
|
|
|
700 |
65%|██████▍ | 187/288 [01:01<00:38, 2.63it/s][A
|
|
|
701 |
65%|██████▌ | 188/288 [01:02<00:36, 2.74it/s][A
|
|
|
702 |
66%|██████▌ | 189/288 [01:02<00:34, 2.90it/s][A
|
|
|
703 |
66%|██████▌ | 190/288 [01:02<00:34, 2.81it/s][A
|
|
|
704 |
66%|██████▋ | 191/288 [01:03<00:39, 2.43it/s][A
|
|
|
705 |
67%|██████▋ | 192/288 [01:03<00:36, 2.65it/s][A
|
|
|
706 |
67%|██████▋ | 193/288 [01:03<00:34, 2.76it/s][A
|
|
|
707 |
67%|██████▋ | 194/288 [01:04<00:34, 2.72it/s][A
|
|
|
708 |
68%|██████▊ | 195/288 [01:04<00:33, 2.80it/s][A
|
|
|
709 |
68%|██████▊ | 196/288 [01:05<00:39, 2.31it/s][A
|
|
|
710 |
68%|██████▊ | 197/288 [01:05<00:36, 2.47it/s][A
|
|
|
711 |
69%|██████▉ | 198/288 [01:05<00:33, 2.72it/s][A
|
|
|
712 |
69%|██████▉ | 199/288 [01:06<00:31, 2.82it/s][A
|
|
|
713 |
69%|██████▉ | 200/288 [01:06<00:29, 3.00it/s][A
|
|
|
714 |
70%|██████▉ | 201/288 [01:06<00:35, 2.46it/s][A
|
|
|
715 |
70%|███████ | 202/288 [01:07<00:32, 2.62it/s][A
|
|
|
716 |
70%|███████ | 203/288 [01:07<00:31, 2.73it/s][A
|
|
|
717 |
71%|███████ | 204/288 [01:07<00:29, 2.82it/s][A
|
|
|
718 |
71%|███████ | 205/288 [01:08<00:28, 2.95it/s][A
|
|
|
719 |
72%|███████▏ | 206/288 [01:08<00:33, 2.42it/s][A
|
|
|
720 |
72%|███████▏ | 207/288 [01:09<00:32, 2.50it/s][A
|
|
|
721 |
72%|███████▏ | 208/288 [01:09<00:31, 2.57it/s][A
|
|
|
722 |
73%|███████▎ | 209/288 [01:09<00:30, 2.61it/s][A
|
|
|
723 |
73%|███████▎ | 210/288 [01:10<00:27, 2.87it/s][A
|
|
|
724 |
73%|███████▎ | 211/288 [01:10<00:36, 2.14it/s][A
|
|
|
725 |
74%|███████▎ | 212/288 [01:11<00:32, 2.36it/s][A
|
|
|
726 |
74%|███████▍ | 213/288 [01:11<00:31, 2.38it/s][A
|
|
|
727 |
74%|███████▍ | 214/288 [01:12<00:29, 2.54it/s][A
|
|
|
728 |
75%|███████▍ | 215/288 [01:12<00:31, 2.30it/s][A
|
|
|
729 |
75%|███████▌ | 216/288 [01:12<00:29, 2.45it/s][A
|
|
|
730 |
75%|███████▌ | 217/288 [01:13<00:26, 2.67it/s][A
|
|
|
731 |
76%|███████▌ | 218/288 [01:13<00:25, 2.72it/s][A
|
|
|
732 |
76%|███████▌ | 219/288 [01:14<00:29, 2.32it/s][A
|
|
|
733 |
76%|███████▋ | 220/288 [01:14<00:28, 2.37it/s][A
|
|
|
734 |
77%|███████▋ | 221/288 [01:14<00:26, 2.49it/s][A
|
|
|
735 |
77%|███████▋ | 222/288 [01:15<00:26, 2.54it/s][A
|
|
|
736 |
77%|███████▋ | 223/288 [01:15<00:28, 2.30it/s][A
|
|
|
737 |
78%|███████▊ | 224/288 [01:16<00:26, 2.45it/s][A
|
|
|
738 |
78%|███████▊ | 225/288 [01:16<00:24, 2.61it/s][A
|
|
|
739 |
78%|███████▊ | 226/288 [01:16<00:22, 2.72it/s][A
|
|
|
740 |
79%|███████▉ | 227/288 [01:17<00:27, 2.25it/s][A
|
|
|
741 |
79%|███████▉ | 228/288 [01:17<00:24, 2.40it/s][A
|
|
|
742 |
80%|███████▉ | 229/288 [01:18<00:23, 2.54it/s][A
|
|
|
743 |
80%|███████▉ | 230/288 [01:18<00:21, 2.66it/s][A
|
|
|
744 |
80%|████��███ | 231/288 [01:19<00:25, 2.23it/s][A
|
|
|
745 |
81%|████████ | 232/288 [01:19<00:22, 2.44it/s][A
|
|
|
746 |
81%|████████ | 233/288 [01:19<00:21, 2.53it/s][A
|
|
|
747 |
81%|████████▏ | 234/288 [01:20<00:19, 2.71it/s][A
|
|
|
748 |
82%|████████▏ | 235/288 [01:20<00:25, 2.12it/s][A
|
|
|
749 |
82%|████████▏ | 236/288 [01:21<00:22, 2.28it/s][A
|
|
|
750 |
82%|████████▏ | 237/288 [01:21<00:21, 2.41it/s][A
|
|
|
751 |
83%|████████▎ | 238/288 [01:21<00:20, 2.50it/s][A
|
|
|
752 |
83%|████████▎ | 239/288 [01:22<00:24, 2.00it/s][A
|
|
|
753 |
83%|████████▎ | 240/288 [01:22<00:21, 2.27it/s][A
|
|
|
754 |
84%|████████▎ | 241/288 [01:23<00:19, 2.42it/s][A
|
|
|
755 |
84%|████████▍ | 242/288 [01:23<00:18, 2.54it/s][A
|
|
|
756 |
84%|████████▍ | 243/288 [01:24<00:21, 2.06it/s][A
|
|
|
757 |
85%|████████▍ | 244/288 [01:24<00:19, 2.24it/s][A
|
|
|
758 |
85%|████████▌ | 245/288 [01:25<00:17, 2.39it/s][A
|
|
|
759 |
85%|████████▌ | 246/288 [01:25<00:17, 2.45it/s][A
|
|
|
760 |
86%|████████▌ | 247/288 [01:26<00:20, 2.02it/s][A
|
|
|
761 |
86%|████████▌ | 248/288 [01:26<00:17, 2.25it/s][A
|
|
|
762 |
86%|████████▋ | 249/288 [01:26<00:16, 2.37it/s][A
|
|
|
763 |
87%|████████▋ | 250/288 [01:27<00:15, 2.45it/s][A
|
|
|
764 |
87%|████████▋ | 251/288 [01:27<00:19, 1.93it/s][A
|
|
|
765 |
88%|████████▊ | 252/288 [01:28<00:17, 2.10it/s][A
|
|
|
766 |
88%|████████▊ | 253/288 [01:28<00:14, 2.34it/s][A
|
|
|
767 |
88%|████████▊ | 254/288 [01:29<00:15, 2.19it/s][A
|
|
|
768 |
89%|████████▊ | 255/288 [01:29<00:13, 2.44it/s][A
|
|
|
769 |
89%|████████▉ | 256/288 [01:29<00:12, 2.56it/s][A
|
|
|
770 |
89%|████████▉ | 257/288 [01:30<00:14, 2.19it/s][A
|
|
|
771 |
90%|████████▉ | 258/288 [01:30<00:13, 2.30it/s][A
|
|
|
772 |
90%|████████▉ | 259/288 [01:31<00:12, 2.39it/s][A
|
|
|
773 |
90%|█████████ | 260/288 [01:31<00:13, 2.08it/s][A
|
|
|
774 |
91%|█████████ | 261/288 [01:32<00:11, 2.26it/s][A
|
|
|
775 |
91%|█████████ | 262/288 [01:32<00:10, 2.41it/s][A
|
|
|
776 |
91%|█████████▏| 263/288 [01:33<00:11, 2.10it/s][A
|
|
|
777 |
92%|█████████▏| 264/288 [01:33<00:10, 2.26it/s][A
|
|
|
778 |
92%|█████████▏| 265/288 [01:33<00:09, 2.39it/s][A
|
|
|
779 |
92%|█████████▏| 266/288 [01:34<00:10, 2.08it/s][A
|
|
|
780 |
93%|█████████▎| 267/288 [01:34<00:09, 2.20it/s][A
|
|
|
781 |
93%|█████████▎| 268/288 [01:35<00:08, 2.38it/s][A
|
|
|
782 |
93%|█████████▎| 269/288 [01:35<00:09, 2.00it/s][A
|
|
|
783 |
94%|█████████▍| 270/288 [01:36<00:08, 2.11it/s][A
|
|
|
784 |
94%|█████████▍| 271/288 [01:36<00:07, 2.28it/s][A
|
|
|
785 |
94%|█████████▍| 272/288 [01:37<00:08, 1.85it/s][A
|
|
|
786 |
95%|█████████▍| 273/288 [01:37<00:07, 2.08it/s][A
|
|
|
787 |
95%|█████████▌| 274/288 [01:38<00:06, 2.28it/s][A
|
|
|
788 |
95%|█████████▌| 275/288 [01:38<00:06, 1.89it/s][A
|
|
|
789 |
96%|█████████▌| 276/288 [01:39<00:05, 2.12it/s][A
|
|
|
790 |
96%|█████████▌| 277/288 [01:39<00:04, 2.29it/s][A
|
|
|
791 |
97%|█████████▋| 278/288 [01:40<00:05, 1.78it/s][A
|
|
|
792 |
97%|█████████▋| 279/288 [01:40<00:04, 2.05it/s][A
|
|
|
793 |
97%|█████████▋| 280/288 [01:41<00:03, 2.24it/s][A
|
|
|
794 |
98%|█████████▊| 281/288 [01:41<00:03, 1.83it/s][A
|
|
|
795 |
98%|█████████▊| 282/288 [01:42<00:02, 2.06it/s][A
|
|
|
796 |
98%|█████████▊| 283/288 [01:42<00:02, 2.17it/s][A
|
|
|
797 |
99%|█████████▊| 284/288 [01:43<00:02, 1.80it/s][A
|
|
|
798 |
99%|█████████▉| 285/288 [01:43<00:01, 2.05it/s][A
|
|
|
799 |
99%|█████████▉| 286/288 [01:44<00:00, 2.26it/s][A
|
|
|
|
|
800 |
|
|
|
801 |
|
802 |
1%|▏ | 500/37300 [15:13<14:56:05, 1.46s/it]
|
|
|
|
|
803 |
[ASaving model checkpoint to ./checkpoint-500
|
|
|
|
|
|
|
|
|
|
1 |
+
02/06/2022 16:31:57 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: True
|
2 |
+
02/06/2022 16:31:57 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
|
3 |
+
_n_gpu=1,
|
4 |
+
adafactor=False,
|
5 |
+
adam_beta1=0.9,
|
6 |
+
adam_beta2=0.999,
|
7 |
+
adam_epsilon=1e-08,
|
8 |
+
bf16=False,
|
9 |
+
bf16_full_eval=False,
|
10 |
+
dataloader_drop_last=False,
|
11 |
+
dataloader_num_workers=0,
|
12 |
+
dataloader_pin_memory=True,
|
13 |
+
ddp_bucket_cap_mb=None,
|
14 |
+
ddp_find_unused_parameters=None,
|
15 |
+
debug=[],
|
16 |
+
deepspeed=None,
|
17 |
+
disable_tqdm=False,
|
18 |
+
do_eval=True,
|
19 |
+
do_predict=False,
|
20 |
+
do_train=True,
|
21 |
+
eval_accumulation_steps=None,
|
22 |
+
eval_steps=500,
|
23 |
+
evaluation_strategy=IntervalStrategy.STEPS,
|
24 |
+
fp16=True,
|
25 |
+
fp16_backend=auto,
|
26 |
+
fp16_full_eval=False,
|
27 |
+
fp16_opt_level=O1,
|
28 |
+
gradient_accumulation_steps=4,
|
29 |
+
gradient_checkpointing=True,
|
30 |
+
greater_is_better=None,
|
31 |
+
group_by_length=True,
|
32 |
+
half_precision_backend=auto,
|
33 |
+
hub_model_id=None,
|
34 |
+
hub_strategy=HubStrategy.EVERY_SAVE,
|
35 |
+
hub_token=<HUB_TOKEN>,
|
36 |
+
ignore_data_skip=False,
|
37 |
+
label_names=None,
|
38 |
+
label_smoothing_factor=0.0,
|
39 |
+
learning_rate=0.0001,
|
40 |
+
length_column_name=input_length,
|
41 |
+
load_best_model_at_end=False,
|
42 |
+
local_rank=-1,
|
43 |
+
log_level=-1,
|
44 |
+
log_level_replica=-1,
|
45 |
+
log_on_each_node=True,
|
46 |
+
logging_dir=./runs/Feb06_16-31-57_job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c,
|
47 |
+
logging_first_step=False,
|
48 |
+
logging_nan_inf_filter=True,
|
49 |
+
logging_steps=100,
|
50 |
+
logging_strategy=IntervalStrategy.STEPS,
|
51 |
+
lr_scheduler_type=SchedulerType.LINEAR,
|
52 |
+
max_grad_norm=1.0,
|
53 |
+
max_steps=-1,
|
54 |
+
metric_for_best_model=None,
|
55 |
+
mp_parameters=,
|
56 |
+
no_cuda=False,
|
57 |
+
num_train_epochs=100.0,
|
58 |
+
optim=OptimizerNames.ADAMW_HF,
|
59 |
+
output_dir=./,
|
60 |
+
overwrite_output_dir=True,
|
61 |
+
past_index=-1,
|
62 |
+
per_device_eval_batch_size=8,
|
63 |
+
per_device_train_batch_size=8,
|
64 |
+
prediction_loss_only=False,
|
65 |
+
push_to_hub=True,
|
66 |
+
push_to_hub_model_id=None,
|
67 |
+
push_to_hub_organization=None,
|
68 |
+
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
|
69 |
+
remove_unused_columns=True,
|
70 |
+
report_to=['tensorboard'],
|
71 |
+
resume_from_checkpoint=None,
|
72 |
+
run_name=./,
|
73 |
+
save_on_each_node=False,
|
74 |
+
save_steps=500,
|
75 |
+
save_strategy=IntervalStrategy.STEPS,
|
76 |
+
save_total_limit=3,
|
77 |
+
seed=42,
|
78 |
+
sharded_ddp=[],
|
79 |
+
skip_memory_metrics=True,
|
80 |
+
tf32=None,
|
81 |
+
tpu_metrics_debug=False,
|
82 |
+
tpu_num_cores=None,
|
83 |
+
use_legacy_prediction_loop=False,
|
84 |
+
warmup_ratio=0.0,
|
85 |
+
warmup_steps=2000,
|
86 |
+
weight_decay=0.0,
|
87 |
+
xpu_backend=None,
|
88 |
+
)
|
89 |
+
02/06/2022 16:31:57 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/common_voice/zh-HK/6.1.0/5693bfc0feeade582a78c2fb250bc88f52bd86f0a7f1bb22bfee67e715de30fd)
|
90 |
+
02/06/2022 16:31:58 - WARNING - datasets.builder - Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/common_voice/zh-HK/6.1.0/5693bfc0feeade582a78c2fb250bc88f52bd86f0a7f1bb22bfee67e715de30fd)
|
91 |
+
02/06/2022 16:31:58 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /workspace/.cache/huggingface/datasets/common_voice/zh-HK/6.1.0/5693bfc0feeade582a78c2fb250bc88f52bd86f0a7f1bb22bfee67e715de30fd/cache-4b9c7ee298793a4a.arrow
|
92 |
+
02/06/2022 16:31:58 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /workspace/.cache/huggingface/datasets/common_voice/zh-HK/6.1.0/5693bfc0feeade582a78c2fb250bc88f52bd86f0a7f1bb22bfee67e715de30fd/cache-229158ba70a553cf.arrow
|
93 |
+
loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6
|
94 |
+
Model config Wav2Vec2Config {
|
95 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
96 |
+
"activation_dropout": 0.0,
|
97 |
+
"adapter_kernel_size": 3,
|
98 |
+
"adapter_stride": 2,
|
99 |
+
"add_adapter": false,
|
100 |
+
"apply_spec_augment": true,
|
101 |
+
"architectures": [
|
102 |
+
"Wav2Vec2ForPreTraining"
|
103 |
+
],
|
104 |
+
"attention_dropout": 0.1,
|
105 |
+
"bos_token_id": 1,
|
106 |
+
"classifier_proj_size": 256,
|
107 |
+
"codevector_dim": 768,
|
108 |
+
"contrastive_logits_temperature": 0.1,
|
109 |
+
"conv_bias": true,
|
110 |
+
"conv_dim": [
|
111 |
+
512,
|
112 |
+
512,
|
113 |
+
512,
|
114 |
+
512,
|
115 |
+
512,
|
116 |
+
512,
|
117 |
+
512
|
118 |
+
],
|
119 |
+
"conv_kernel": [
|
120 |
+
10,
|
121 |
+
3,
|
122 |
+
3,
|
123 |
+
3,
|
124 |
+
3,
|
125 |
+
2,
|
126 |
+
2
|
127 |
+
],
|
128 |
+
"conv_stride": [
|
129 |
+
5,
|
130 |
+
2,
|
131 |
+
2,
|
132 |
+
2,
|
133 |
+
2,
|
134 |
+
2,
|
135 |
+
2
|
136 |
+
],
|
137 |
+
"ctc_loss_reduction": "sum",
|
138 |
+
"ctc_zero_infinity": false,
|
139 |
+
"diversity_loss_weight": 0.1,
|
140 |
+
"do_stable_layer_norm": true,
|
141 |
+
"eos_token_id": 2,
|
142 |
+
"feat_extract_activation": "gelu",
|
143 |
+
"feat_extract_dropout": 0.0,
|
144 |
+
"feat_extract_norm": "layer",
|
145 |
+
"feat_proj_dropout": 0.1,
|
146 |
+
"feat_quantizer_dropout": 0.0,
|
147 |
+
"final_dropout": 0.0,
|
148 |
+
"gradient_checkpointing": false,
|
149 |
+
"hidden_act": "gelu",
|
150 |
+
"hidden_dropout": 0.1,
|
151 |
+
"hidden_size": 1024,
|
152 |
+
"initializer_range": 0.02,
|
153 |
+
"intermediate_size": 4096,
|
154 |
+
"layer_norm_eps": 1e-05,
|
155 |
+
"layerdrop": 0.1,
|
156 |
+
"mask_feature_length": 10,
|
157 |
+
"mask_feature_min_masks": 0,
|
158 |
+
"mask_feature_prob": 0.0,
|
159 |
+
"mask_time_length": 10,
|
160 |
+
"mask_time_min_masks": 2,
|
161 |
+
"mask_time_prob": 0.075,
|
162 |
+
"model_type": "wav2vec2",
|
163 |
+
"num_adapter_layers": 3,
|
164 |
+
"num_attention_heads": 16,
|
165 |
+
"num_codevector_groups": 2,
|
166 |
+
"num_codevectors_per_group": 320,
|
167 |
+
"num_conv_pos_embedding_groups": 16,
|
168 |
+
"num_conv_pos_embeddings": 128,
|
169 |
+
"num_feat_extract_layers": 7,
|
170 |
+
"num_hidden_layers": 24,
|
171 |
+
"num_negatives": 100,
|
172 |
+
"output_hidden_size": 1024,
|
173 |
+
"pad_token_id": 0,
|
174 |
+
"proj_codevector_dim": 768,
|
175 |
+
"tdnn_dilation": [
|
176 |
+
1,
|
177 |
+
2,
|
178 |
+
3,
|
179 |
+
1,
|
180 |
+
1
|
181 |
+
],
|
182 |
+
"tdnn_dim": [
|
183 |
+
512,
|
184 |
+
512,
|
185 |
+
512,
|
186 |
+
512,
|
187 |
+
1500
|
188 |
+
],
|
189 |
+
"tdnn_kernel": [
|
190 |
+
5,
|
191 |
+
3,
|
192 |
+
3,
|
193 |
+
1,
|
194 |
+
1
|
195 |
+
],
|
196 |
+
"torch_dtype": "float32",
|
197 |
+
"transformers_version": "4.17.0.dev0",
|
198 |
+
"use_weighted_layer_sum": false,
|
199 |
+
"vocab_size": 32,
|
200 |
+
"xvector_output_dim": 512
|
201 |
+
}
|
202 |
+
|
203 |
+
|
204 |
0%| | 0/1 [00:00<?, ?ba/s]
|
205 |
+
|
206 |
0%| | 0/1 [00:00<?, ?ba/s]
|
207 |
+
Didn't find file ./tokenizer_config.json. We won't load it.
|
208 |
+
Didn't find file ./added_tokens.json. We won't load it.
|
209 |
+
Didn't find file ./special_tokens_map.json. We won't load it.
|
210 |
+
Didn't find file ./tokenizer.json. We won't load it.
|
211 |
+
loading file ./vocab.json
|
212 |
+
loading file None
|
213 |
+
loading file None
|
214 |
+
loading file None
|
215 |
+
loading file None
|
216 |
+
file ./config.json not found
|
217 |
+
Adding <s> to the vocabulary
|
218 |
+
Adding </s> to the vocabulary
|
219 |
+
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
|
220 |
+
loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6
|
221 |
+
Model config Wav2Vec2Config {
|
222 |
+
"_name_or_path": "facebook/wav2vec2-xls-r-300m",
|
223 |
+
"activation_dropout": 0.0,
|
224 |
+
"adapter_kernel_size": 3,
|
225 |
+
"adapter_stride": 2,
|
226 |
+
"add_adapter": false,
|
227 |
+
"apply_spec_augment": true,
|
228 |
+
"architectures": [
|
229 |
+
"Wav2Vec2ForPreTraining"
|
230 |
+
],
|
231 |
+
"attention_dropout": 0.1,
|
232 |
+
"bos_token_id": 1,
|
233 |
+
"classifier_proj_size": 256,
|
234 |
+
"codevector_dim": 768,
|
235 |
+
"contrastive_logits_temperature": 0.1,
|
236 |
+
"conv_bias": true,
|
237 |
+
"conv_dim": [
|
238 |
+
512,
|
239 |
+
512,
|
240 |
+
512,
|
241 |
+
512,
|
242 |
+
512,
|
243 |
+
512,
|
244 |
+
512
|
245 |
+
],
|
246 |
+
"conv_kernel": [
|
247 |
+
10,
|
248 |
+
3,
|
249 |
+
3,
|
250 |
+
3,
|
251 |
+
3,
|
252 |
+
2,
|
253 |
+
2
|
254 |
+
],
|
255 |
+
"conv_stride": [
|
256 |
+
5,
|
257 |
+
2,
|
258 |
+
2,
|
259 |
+
2,
|
260 |
+
2,
|
261 |
+
2,
|
262 |
+
2
|
263 |
+
],
|
264 |
+
"ctc_loss_reduction": "sum",
|
265 |
+
"ctc_zero_infinity": false,
|
266 |
+
"diversity_loss_weight": 0.1,
|
267 |
+
"do_stable_layer_norm": true,
|
268 |
+
"eos_token_id": 2,
|
269 |
+
"feat_extract_activation": "gelu",
|
270 |
+
"feat_extract_dropout": 0.0,
|
271 |
+
"feat_extract_norm": "layer",
|
272 |
+
"feat_proj_dropout": 0.1,
|
273 |
+
"feat_quantizer_dropout": 0.0,
|
274 |
+
"final_dropout": 0.0,
|
275 |
+
"gradient_checkpointing": false,
|
276 |
+
"hidden_act": "gelu",
|
277 |
+
"hidden_dropout": 0.1,
|
278 |
+
"hidden_size": 1024,
|
279 |
+
"initializer_range": 0.02,
|
280 |
+
"intermediate_size": 4096,
|
281 |
+
"layer_norm_eps": 1e-05,
|
282 |
+
"layerdrop": 0.1,
|
283 |
+
"mask_feature_length": 10,
|
284 |
+
"mask_feature_min_masks": 0,
|
285 |
+
"mask_feature_prob": 0.0,
|
286 |
+
"mask_time_length": 10,
|
287 |
+
"mask_time_min_masks": 2,
|
288 |
+
"mask_time_prob": 0.075,
|
289 |
+
"model_type": "wav2vec2",
|
290 |
+
"num_adapter_layers": 3,
|
291 |
+
"num_attention_heads": 16,
|
292 |
+
"num_codevector_groups": 2,
|
293 |
+
"num_codevectors_per_group": 320,
|
294 |
+
"num_conv_pos_embedding_groups": 16,
|
295 |
+
"num_conv_pos_embeddings": 128,
|
296 |
+
"num_feat_extract_layers": 7,
|
297 |
+
"num_hidden_layers": 24,
|
298 |
+
"num_negatives": 100,
|
299 |
+
"output_hidden_size": 1024,
|
300 |
+
"pad_token_id": 0,
|
301 |
+
"proj_codevector_dim": 768,
|
302 |
+
"tdnn_dilation": [
|
303 |
+
1,
|
304 |
+
2,
|
305 |
+
3,
|
306 |
+
1,
|
307 |
+
1
|
308 |
+
],
|
309 |
+
"tdnn_dim": [
|
310 |
+
512,
|
311 |
+
512,
|
312 |
+
512,
|
313 |
+
512,
|
314 |
+
1500
|
315 |
+
],
|
316 |
+
"tdnn_kernel": [
|
317 |
+
5,
|
318 |
+
3,
|
319 |
+
3,
|
320 |
+
1,
|
321 |
+
1
|
322 |
+
],
|
323 |
+
"torch_dtype": "float32",
|
324 |
+
"transformers_version": "4.17.0.dev0",
|
325 |
+
"use_weighted_layer_sum": false,
|
326 |
+
"vocab_size": 32,
|
327 |
+
"xvector_output_dim": 512
|
328 |
+
}
|
329 |
+
|
330 |
+
loading feature extractor configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/preprocessor_config.json from cache at /workspace/.cache/huggingface/transformers/6fb028b95b394059e7d3b367bbca2382b576c66aebe896f04d2cd34e1b575f5b.d4484dc1c81456a2461485e7168b04347a7b9a4e3b1ef3aba723323b33e12326
|
331 |
+
Feature extractor Wav2Vec2FeatureExtractor {
|
332 |
+
"do_normalize": true,
|
333 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
334 |
+
"feature_size": 1,
|
335 |
+
"padding_side": "right",
|
336 |
+
"padding_value": 0,
|
337 |
+
"return_attention_mask": true,
|
338 |
+
"sampling_rate": 16000
|
339 |
+
}
|
340 |
+
|
341 |
+
loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd
|
342 |
+
Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_hid.bias', 'quantizer.codevectors', 'quantizer.weight_proj.weight', 'project_q.weight', 'project_hid.weight', 'project_q.bias', 'quantizer.weight_proj.bias']
|
343 |
+
- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
|
344 |
+
- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
|
345 |
+
Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.weight', 'lm_head.bias']
|
346 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
347 |
+
02/06/2022 16:32:04 - WARNING - datasets.arrow_dataset - Loading cached processed dataset at /workspace/.cache/huggingface/datasets/common_voice/zh-HK/6.1.0/5693bfc0feeade582a78c2fb250bc88f52bd86f0a7f1bb22bfee67e715de30fd/cache-34b3c26b7a1907b4.arrow
|
348 |
+
|
349 |
+
|
350 |
+
|
351 |
0%| | 0/3 [00:00<?, ?ba/s]
|
352 |
+
Configuration saved in ./preprocessor_config.json
|
353 |
+
tokenizer config file saved in ./tokenizer_config.json
|
354 |
+
Special tokens file saved in ./special_tokens_map.json
|
355 |
+
added tokens file saved in ./added_tokens.json
|
356 |
+
Configuration saved in ./config.json
|
357 |
+
loading feature extractor configuration file ./preprocessor_config.json
|
358 |
+
loading configuration file ./config.json
|
359 |
+
Model config Wav2Vec2Config {
|
360 |
+
"_name_or_path": "./",
|
361 |
+
"activation_dropout": 0.1,
|
362 |
+
"adapter_kernel_size": 3,
|
363 |
+
"adapter_stride": 2,
|
364 |
+
"add_adapter": false,
|
365 |
+
"apply_spec_augment": true,
|
366 |
+
"architectures": [
|
367 |
+
"Wav2Vec2ForPreTraining"
|
368 |
+
],
|
369 |
+
"attention_dropout": 0.0,
|
370 |
+
"bos_token_id": 1,
|
371 |
+
"classifier_proj_size": 256,
|
372 |
+
"codevector_dim": 768,
|
373 |
+
"contrastive_logits_temperature": 0.1,
|
374 |
+
"conv_bias": true,
|
375 |
+
"conv_dim": [
|
376 |
+
512,
|
377 |
+
512,
|
378 |
+
512,
|
379 |
+
512,
|
380 |
+
512,
|
381 |
+
512,
|
382 |
+
512
|
383 |
+
],
|
384 |
+
"conv_kernel": [
|
385 |
+
10,
|
386 |
+
3,
|
387 |
+
3,
|
388 |
+
3,
|
389 |
+
3,
|
390 |
+
2,
|
391 |
+
2
|
392 |
+
],
|
393 |
+
"conv_stride": [
|
394 |
+
5,
|
395 |
+
2,
|
396 |
+
2,
|
397 |
+
2,
|
398 |
+
2,
|
399 |
+
2,
|
400 |
+
2
|
401 |
+
],
|
402 |
+
"ctc_loss_reduction": "mean",
|
403 |
+
"ctc_zero_infinity": false,
|
404 |
+
"diversity_loss_weight": 0.1,
|
405 |
+
"do_stable_layer_norm": true,
|
406 |
+
"eos_token_id": 2,
|
407 |
+
"feat_extract_activation": "gelu",
|
408 |
+
"feat_extract_dropout": 0.0,
|
409 |
+
"feat_extract_norm": "layer",
|
410 |
+
"feat_proj_dropout": 0.0,
|
411 |
+
"feat_quantizer_dropout": 0.0,
|
412 |
+
"final_dropout": 0.0,
|
413 |
+
"hidden_act": "gelu",
|
414 |
+
"hidden_dropout": 0.0,
|
415 |
+
"hidden_size": 1024,
|
416 |
+
"initializer_range": 0.02,
|
417 |
+
"intermediate_size": 4096,
|
418 |
+
"layer_norm_eps": 1e-05,
|
419 |
+
"layerdrop": 0.0,
|
420 |
+
"mask_feature_length": 64,
|
421 |
+
"mask_feature_min_masks": 0,
|
422 |
+
"mask_feature_prob": 0.25,
|
423 |
+
"mask_time_length": 10,
|
424 |
+
"mask_time_min_masks": 2,
|
425 |
+
"mask_time_prob": 0.75,
|
426 |
+
"model_type": "wav2vec2",
|
427 |
+
"num_adapter_layers": 3,
|
428 |
+
"num_attention_heads": 16,
|
429 |
+
"num_codevector_groups": 2,
|
430 |
+
"num_codevectors_per_group": 320,
|
431 |
+
"num_conv_pos_embedding_groups": 16,
|
432 |
+
"num_conv_pos_embeddings": 128,
|
433 |
+
"num_feat_extract_layers": 7,
|
434 |
+
"num_hidden_layers": 24,
|
435 |
+
"num_negatives": 100,
|
436 |
+
"output_hidden_size": 1024,
|
437 |
+
"pad_token_id": 3652,
|
438 |
+
"proj_codevector_dim": 768,
|
439 |
+
"tdnn_dilation": [
|
440 |
+
1,
|
441 |
+
2,
|
442 |
+
3,
|
443 |
+
1,
|
444 |
+
1
|
445 |
+
],
|
446 |
+
"tdnn_dim": [
|
447 |
+
512,
|
448 |
+
512,
|
449 |
+
512,
|
450 |
+
512,
|
451 |
+
1500
|
452 |
+
],
|
453 |
+
"tdnn_kernel": [
|
454 |
+
5,
|
455 |
+
3,
|
456 |
+
3,
|
457 |
+
1,
|
458 |
+
1
|
459 |
+
],
|
460 |
+
"torch_dtype": "float32",
|
461 |
+
"transformers_version": "4.17.0.dev0",
|
462 |
+
"use_weighted_layer_sum": false,
|
463 |
+
"vocab_size": 3655,
|
464 |
+
"xvector_output_dim": 512
|
465 |
+
}
|
466 |
+
|
467 |
+
loading feature extractor configuration file ./preprocessor_config.json
|
468 |
+
Feature extractor Wav2Vec2FeatureExtractor {
|
469 |
+
"do_normalize": true,
|
470 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
471 |
+
"feature_size": 1,
|
472 |
+
"padding_side": "right",
|
473 |
+
"padding_value": 0,
|
474 |
+
"return_attention_mask": true,
|
475 |
+
"sampling_rate": 16000
|
476 |
+
}
|
477 |
+
|
478 |
+
Didn't find file ./tokenizer.json. We won't load it.
|
479 |
+
loading file ./vocab.json
|
480 |
+
loading file ./tokenizer_config.json
|
481 |
+
loading file ./added_tokens.json
|
482 |
+
loading file ./special_tokens_map.json
|
483 |
+
loading file None
|
484 |
+
Adding <s> to the vocabulary
|
485 |
+
Adding </s> to the vocabulary
|
486 |
+
/workspace/wav2vec2-xls-r-300m-zh-HK-v2/./ is already a clone of https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2. Make sure you pull the latest changes with `repo.git_pull()`.
|
487 |
+
02/06/2022 16:32:48 - WARNING - huggingface_hub.repository - /workspace/wav2vec2-xls-r-300m-zh-HK-v2/./ is already a clone of https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2. Make sure you pull the latest changes with `repo.git_pull()`.
|
488 |
+
Using amp half precision backend
|
489 |
+
The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
490 |
+
/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
|
491 |
+
warnings.warn(
|
492 |
+
***** Running training *****
|
493 |
+
Num examples = 11949
|
494 |
+
Num Epochs = 100
|
495 |
+
Instantaneous batch size per device = 8
|
496 |
+
Total train batch size (w. parallel, distributed & accumulation) = 32
|
497 |
+
Gradient Accumulation steps = 4
|
498 |
+
Total optimization steps = 37300
|
499 |
+
|
500 |
0%| | 0/37300 [00:00<?, ?it/s]
|
501 |
0%| | 1/37300 [00:02<27:52:51, 2.69s/it]
|
502 |
0%| | 2/37300 [00:05<27:44:40, 2.68s/it]
|
503 |
0%| | 3/37300 [00:07<26:20:20, 2.54s/it]
|
504 |
0%| | 4/37300 [00:10<25:14:13, 2.44s/it]
|
505 |
0%| | 5/37300 [00:12<24:34:00, 2.37s/it]
|
506 |
0%| | 6/37300 [00:14<23:51:17, 2.30s/it]
|
507 |
0%| | 7/37300 [00:16<23:12:30, 2.24s/it]
|
508 |
0%| | 8/37300 [00:18<22:34:15, 2.18s/it]
|
509 |
0%| | 9/37300 [00:20<21:43:40, 2.10s/it]
|
510 |
0%| | 10/37300 [00:22<21:09:24, 2.04s/it]
|
511 |
0%| | 11/37300 [00:24<20:23:14, 1.97s/it]
|
512 |
0%| | 12/37300 [00:26<19:48:38, 1.91s/it]
|
513 |
0%| | 13/37300 [00:27<19:19:05, 1.87s/it]
|
514 |
0%| | 14/37300 [00:29<18:58:02, 1.83s/it]
|
515 |
0%| | 15/37300 [00:31<18:35:09, 1.79s/it]
|
516 |
0%| | 16/37300 [00:32<18:20:58, 1.77s/it]
|
517 |
0%| | 17/37300 [00:34<18:01:00, 1.74s/it]
|
518 |
0%| | 18/37300 [00:36<17:45:52, 1.72s/it]
|
519 |
0%| | 19/37300 [00:37<17:25:44, 1.68s/it]
|
520 |
0%| | 20/37300 [00:39<17:09:19, 1.66s/it]
|
521 |
0%| | 21/37300 [00:41<16:53:34, 1.63s/it]
|
522 |
0%| | 22/37300 [00:42<16:33:49, 1.60s/it]
|
523 |
0%| | 23/37300 [00:44<16:24:45, 1.59s/it]
|
524 |
0%| | 24/37300 [00:45<16:23:26, 1.58s/it]
|
525 |
0%| | 25/37300 [00:47<16:09:47, 1.56s/it]
|
526 |
0%| | 26/37300 [00:48<15:54:32, 1.54s/it]
|
527 |
0%| | 27/37300 [00:50<15:33:01, 1.50s/it]
|
528 |
0%| | 28/37300 [00:51<15:34:21, 1.50s/it]
|
529 |
0%| | 29/37300 [00:53<15:14:30, 1.47s/it]
|
530 |
0%| | 30/37300 [00:54<14:53:39, 1.44s/it]
|
531 |
0%| | 31/37300 [00:55<14:28:05, 1.40s/it]
|
532 |
0%| | 32/37300 [00:56<14:10:28, 1.37s/it]
|
533 |
0%| | 33/37300 [00:58<13:55:51, 1.35s/it]
|
534 |
0%| | 34/37300 [00:59<13:37:37, 1.32s/it]
|
535 |
0%| | 35/37300 [01:00<13:25:49, 1.30s/it]
|
536 |
0%| | 36/37300 [01:01<13:05:22, 1.26s/it]
|
537 |
0%| | 37/37300 [01:03<12:58:00, 1.25s/it]
|
538 |
0%| | 38/37300 [01:04<12:54:34, 1.25s/it]
|
539 |
0%| | 39/37300 [01:05<12:45:42, 1.23s/it]
|
540 |
0%| | 40/37300 [01:06<12:35:43, 1.22s/it]
|
541 |
0%| | 41/37300 [01:07<12:29:24, 1.21s/it]
|
542 |
0%| | 42/37300 [01:09<12:24:22, 1.20s/it]
|
543 |
0%| | 43/37300 [01:10<12:09:58, 1.18s/it]
|
544 |
0%| | 44/37300 [01:11<11:54:30, 1.15s/it]
|
545 |
0%| | 45/37300 [01:12<11:37:04, 1.12s/it]
|
546 |
0%| | 46/37300 [01:13<11:22:02, 1.10s/it]
|
547 |
0%| | 47/37300 [01:14<11:10:26, 1.08s/it]
|
548 |
0%| | 48/37300 [01:15<10:59:46, 1.06s/it]
|
549 |
0%| | 49/37300 [01:16<10:45:22, 1.04s/it]
|
550 |
0%| | 50/37300 [01:17<10:30:56, 1.02s/it]
|
551 |
0%| | 51/37300 [01:20<15:17:02, 1.48s/it]
|
552 |
0%| | 52/37300 [01:22<18:47:59, 1.82s/it]
|
553 |
0%| | 53/37300 [01:25<20:33:46, 1.99s/it]
|
554 |
0%| | 54/37300 [01:27<21:31:50, 2.08s/it]
|
555 |
0%| | 55/37300 [01:29<21:58:23, 2.12s/it]
|
556 |
0%| | 56/37300 [01:31<22:08:50, 2.14s/it]
|
557 |
0%| | 57/37300 [01:33<22:03:41, 2.13s/it]
|
558 |
0%| | 58/37300 [01:35<21:56:25, 2.12s/it]
|
559 |
0%| | 59/37300 [01:38<21:45:05, 2.10s/it]
|
560 |
0%| | 60/37300 [01:39<21:12:29, 2.05s/it]
|
561 |
0%| | 61/37300 [01:41<20:39:19, 2.00s/it]
|
562 |
0%| | 62/37300 [01:43<20:08:46, 1.95s/it]
|
563 |
0%| | 63/37300 [01:45<19:34:13, 1.89s/it]
|
564 |
0%| | 64/37300 [01:47<19:05:14, 1.85s/it]
|
565 |
0%| | 65/37300 [01:48<18:38:25, 1.80s/it]
|
566 |
0%| | 66/37300 [01:50<18:18:23, 1.77s/it]
|
567 |
0%| | 67/37300 [01:52<17:59:04, 1.74s/it]
|
568 |
0%| | 68/37300 [01:53<17:39:44, 1.71s/it]
|
569 |
0%| | 69/37300 [01:55<17:23:14, 1.68s/it]
|
570 |
0%| | 70/37300 [01:57<17:14:44, 1.67s/it]
|
571 |
0%| | 71/37300 [01:58<16:47:48, 1.62s/it]
|
572 |
0%| | 72/37300 [02:00<16:31:57, 1.60s/it]
|
573 |
0%| | 73/37300 [02:01<16:13:28, 1.57s/it]
|
574 |
0%| | 74/37300 [02:03<16:03:25, 1.55s/it]
|
575 |
0%| | 75/37300 [02:04<15:45:47, 1.52s/it]
|
576 |
0%| | 76/37300 [02:06<15:34:44, 1.51s/it]
|
577 |
0%| | 77/37300 [02:07<15:33:55, 1.51s/it]
|
578 |
0%| | 78/37300 [02:09<15:20:42, 1.48s/it]
|
579 |
0%| | 79/37300 [02:10<15:07:12, 1.46s/it]
|
580 |
0%| | 80/37300 [02:11<14:56:02, 1.44s/it]
|
581 |
0%| | 81/37300 [02:13<14:43:08, 1.42s/it]
|
582 |
0%| | 82/37300 [02:14<14:20:35, 1.39s/it]
|
583 |
0%| | 83/37300 [02:15<13:58:56, 1.35s/it]
|
584 |
0%| | 84/37300 [02:17<13:46:27, 1.33s/it]
|
585 |
0%| | 85/37300 [02:18<13:32:48, 1.31s/it]
|
586 |
0%| | 86/37300 [02:19<13:15:56, 1.28s/it]
|
587 |
0%| | 87/37300 [02:20<13:06:35, 1.27s/it]
|
588 |
0%| | 88/37300 [02:22<13:08:02, 1.27s/it]
|
589 |
0%| | 89/37300 [02:23<13:17:08, 1.29s/it]
|
590 |
0%| | 90/37300 [02:24<13:10:15, 1.27s/it]
|
591 |
0%| | 91/37300 [02:25<12:51:09, 1.24s/it]
|
592 |
0%| | 92/37300 [02:26<12:38:10, 1.22s/it]
|
593 |
0%| | 93/37300 [02:28<12:31:19, 1.21s/it]
|
594 |
0%| | 94/37300 [02:29<12:20:50, 1.19s/it]
|
595 |
0%| | 95/37300 [02:30<12:04:08, 1.17s/it]
|
596 |
0%| | 96/37300 [02:31<11:58:35, 1.16s/it]
|
597 |
0%| | 97/37300 [02:32<11:51:50, 1.15s/it]
|
598 |
0%| | 98/37300 [02:33<11:57:28, 1.16s/it]
|
599 |
0%| | 99/37300 [02:34<11:27:51, 1.11s/it]
|
600 |
0%| | 100/37300 [02:35<10:59:19, 1.06s/it]
|
601 |
|
602 |
0%| | 100/37300 [02:35<10:59:19, 1.06s/it]
|
603 |
0%| | 101/37300 [02:38<15:45:32, 1.53s/it]
|
604 |
0%| | 102/37300 [02:40<18:45:01, 1.81s/it]
|
605 |
0%| | 103/37300 [02:43<20:54:43, 2.02s/it]
|
606 |
0%| | 104/37300 [02:45<21:57:30, 2.13s/it]
|
607 |
0%| | 105/37300 [02:48<22:31:20, 2.18s/it]
|
608 |
0%| | 106/37300 [02:50<22:43:03, 2.20s/it]
|
609 |
0%| | 107/37300 [02:52<22:35:22, 2.19s/it]
|
610 |
0%| | 108/37300 [02:54<22:28:01, 2.17s/it]
|
611 |
0%| | 109/37300 [02:56<22:07:51, 2.14s/it]
|
612 |
0%| | 110/37300 [02:58<21:38:46, 2.10s/it]
|
613 |
0%| | 111/37300 [03:00<20:54:47, 2.02s/it]
|
614 |
0%| | 112/37300 [03:02<20:20:21, 1.97s/it]
|
615 |
0%| | 113/37300 [03:04<19:49:19, 1.92s/it]
|
616 |
0%| | 114/37300 [03:05<19:12:13, 1.86s/it]
|
617 |
0%| | 115/37300 [03:07<18:44:03, 1.81s/it]
|
618 |
0%| | 116/37300 [03:09<18:22:26, 1.78s/it]
|
619 |
0%| | 117/37300 [03:11<18:04:39, 1.75s/it]
|
620 |
0%| | 118/37300 [03:12<17:47:09, 1.72s/it]
|
621 |
0%| | 119/37300 [03:14<17:27:27, 1.69s/it]
|
622 |
0%| | 120/37300 [03:15<17:20:24, 1.68s/it]
|
623 |
0%| | 121/37300 [03:17<16:59:01, 1.64s/it]
|
624 |
0%| | 122/37300 [03:19<16:42:22, 1.62s/it]
|
625 |
0%| | 123/37300 [03:20<16:21:49, 1.58s/it]
|
626 |
0%| | 124/37300 [03:22<16:05:35, 1.56s/it]
|
627 |
0%| | 125/37300 [03:23<15:48:51, 1.53s/it]
|
628 |
0%| | 126/37300 [03:24<15:35:04, 1.51s/it]
|
629 |
0%| | 127/37300 [03:26<15:18:16, 1.48s/it]
|
630 |
0%| | 128/37300 [03:27<15:03:16, 1.46s/it]
|
631 |
0%| | 129/37300 [03:29<14:59:34, 1.45s/it]
|
632 |
0%| | 130/37300 [03:30<14:46:24, 1.43s/it]
|
633 |
0%| | 131/37300 [03:31<14:31:11, 1.41s/it]
|
634 |
0%| | 132/37300 [03:33<14:15:12, 1.38s/it]
|
635 |
0%| | 133/37300 [03:34<13:58:47, 1.35s/it]
|
636 |
0%| | 134/37300 [03:35<13:42:15, 1.33s/it]
|
637 |
0%| | 135/37300 [03:37<13:30:43, 1.31s/it]
|
638 |
0%| | 136/37300 [03:38<13:19:58, 1.29s/it]
|
639 |
0%| | 137/37300 [03:39<13:06:24, 1.27s/it]
|
640 |
0%| | 138/37300 [03:40<12:58:20, 1.26s/it]
|
641 |
0%| | 139/37300 [03:42<12:48:51, 1.24s/it]
|
642 |
0%| | 140/37300 [03:43<12:39:14, 1.23s/it]
|
643 |
0%| | 141/37300 [03:44<12:31:25, 1.21s/it]
|
644 |
0%| | 142/37300 [03:45<12:21:48, 1.20s/it]
|
645 |
0%| | 143/37300 [03:46<12:11:52, 1.18s/it]
|
646 |
0%| | 144/37300 [03:47<12:02:04, 1.17s/it]
|
647 |
0%| | 145/37300 [03:48<11:45:59, 1.14s/it]
|
648 |
0%| | 146/37300 [03:49<11:28:24, 1.11s/it]
|
649 |
0%| | 147/37300 [03:50<11:14:51, 1.09s/it]
|
650 |
0%| | 148/37300 [03:52<11:00:52, 1.07s/it]
|
651 |
0%| | 149/37300 [03:53<10:48:50, 1.05s/it]
|
652 |
0%| | 150/37300 [03:54<10:38:20, 1.03s/it]
|
653 |
0%| | 151/37300 [03:56<15:47:29, 1.53s/it]
|
654 |
0%| | 152/37300 [03:59<18:55:25, 1.83s/it]
|
655 |
0%| | 153/37300 [04:01<20:26:23, 1.98s/it]
|
656 |
0%| | 154/37300 [04:03<21:20:13, 2.07s/it]
|
657 |
0%| | 155/37300 [04:06<21:41:01, 2.10s/it]
|
658 |
0%| | 156/37300 [04:08<21:49:57, 2.12s/it]
|
659 |
0%| | 157/37300 [04:10<21:52:03, 2.12s/it]
|
660 |
0%| | 158/37300 [04:12<21:41:55, 2.10s/it]
|
661 |
0%| | 159/37300 [04:14<21:18:45, 2.07s/it]
|
662 |
0%| | 160/37300 [04:16<20:51:07, 2.02s/it]
|
663 |
0%| | 161/37300 [04:18<20:24:13, 1.98s/it]
|
664 |
0%| | 162/37300 [04:19<20:01:35, 1.94s/it]
|
665 |
0%| | 163/37300 [04:21<19:33:34, 1.90s/it]
|
666 |
0%| | 164/37300 [04:23<19:05:20, 1.85s/it]
|
667 |
0%| | 165/37300 [04:25<18:42:30, 1.81s/it]
|
668 |
0%| | 166/37300 [04:26<18:20:56, 1.78s/it]
|
669 |
0%| | 167/37300 [04:28<17:59:54, 1.74s/it]
|
670 |
0%| | 168/37300 [04:30<17:40:57, 1.71s/it]
|
671 |
0%| | 169/37300 [04:31<17:23:10, 1.69s/it]
|
672 |
0%| | 170/37300 [04:33<17:06:21, 1.66s/it]
|
673 |
0%| | 171/37300 [04:35<16:55:37, 1.64s/it]
|
674 |
0%| | 172/37300 [04:36<16:37:58, 1.61s/it]
|
675 |
0%| | 173/37300 [04:38<16:18:04, 1.58s/it]
|
676 |
0%| | 174/37300 [04:39<16:04:23, 1.56s/it]
|
677 |
0%| | 175/37300 [04:41<15:48:34, 1.53s/it]
|
678 |
0%| | 176/37300 [04:42<15:34:02, 1.51s/it]
|
679 |
0%| | 177/37300 [04:43<15:21:04, 1.49s/it]
|
680 |
0%| | 178/37300 [04:45<15:07:04, 1.47s/it]
|
681 |
0%| | 179/37300 [04:46<14:52:21, 1.44s/it]
|
682 |
0%| | 180/37300 [04:48<14:37:16, 1.42s/it]
|
683 |
0%| | 181/37300 [04:49<14:17:20, 1.39s/it]
|
684 |
0%| | 182/37300 [04:50<14:02:50, 1.36s/it]
|
685 |
0%| | 183/37300 [04:52<13:46:55, 1.34s/it]
|
686 |
0%| | 184/37300 [04:53<13:31:47, 1.31s/it]
|
687 |
0%| | 185/37300 [04:54<13:19:05, 1.29s/it]
|
688 |
0%| | 186/37300 [04:55<13:04:14, 1.27s/it]
|
689 |
1%| | 187/37300 [04:56<12:56:13, 1.25s/it]
|
690 |
1%| | 188/37300 [04:58<12:50:37, 1.25s/it]
|
691 |
1%| | 189/37300 [04:59<12:44:06, 1.24s/it]
|
692 |
1%| | 190/37300 [05:00<12:32:33, 1.22s/it]
|
693 |
1%| | 191/37300 [05:01<12:26:03, 1.21s/it]
|
694 |
1%| | 192/37300 [05:02<12:23:02, 1.20s/it]
|
695 |
1%| | 193/37300 [05:04<12:13:22, 1.19s/it]
|
696 |
1%| | 194/37300 [05:05<11:58:56, 1.16s/it]
|
697 |
1%| | 195/37300 [05:06<11:38:50, 1.13s/it]
|
698 |
1%| | 196/37300 [05:07<11:23:43, 1.11s/it]
|
699 |
1%| | 197/37300 [05:08<11:11:30, 1.09s/it]
|
700 |
1%| | 198/37300 [05:09<10:57:12, 1.06s/it]
|
701 |
1%| | 199/37300 [05:10<10:44:39, 1.04s/it]
|
702 |
1%| | 200/37300 [05:11<10:33:35, 1.02s/it]
|
703 |
|
704 |
1%| | 200/37300 [05:11<10:33:35, 1.02s/it]
|
705 |
1%| | 201/37300 [05:13<15:31:47, 1.51s/it]
|
706 |
1%| | 202/37300 [05:16<18:41:01, 1.81s/it]
|
707 |
1%| | 203/37300 [05:18<20:25:35, 1.98s/it]
|
708 |
1%| | 204/37300 [05:21<21:20:46, 2.07s/it]
|
709 |
1%| | 205/37300 [05:23<21:47:59, 2.12s/it]
|
710 |
1%| | 206/37300 [05:25<21:57:05, 2.13s/it]
|
711 |
1%| | 207/37300 [05:27<21:46:58, 2.11s/it]
|
712 |
1%| | 208/37300 [05:29<21:27:39, 2.08s/it]
|
713 |
1%| | 209/37300 [05:31<21:09:13, 2.05s/it]
|
714 |
1%| | 210/37300 [05:33<20:38:21, 2.00s/it]
|
715 |
1%| | 211/37300 [05:35<20:06:57, 1.95s/it]
|
716 |
1%| | 212/37300 [05:37<19:39:36, 1.91s/it]
|
717 |
1%| | 213/37300 [05:38<19:13:12, 1.87s/it]
|
718 |
1%| | 214/37300 [05:40<18:48:22, 1.83s/it]
|
719 |
1%| | 215/37300 [05:42<18:28:07, 1.79s/it]
|
720 |
1%| | 216/37300 [05:44<18:11:30, 1.77s/it]
|
721 |
1%| | 217/37300 [05:45<17:56:19, 1.74s/it]
|
722 |
1%| | 218/37300 [05:47<17:38:08, 1.71s/it]
|
723 |
1%| | 219/37300 [05:49<17:21:49, 1.69s/it]
|
724 |
1%| | 220/37300 [05:50<17:03:17, 1.66s/it]
|
725 |
1%| | 221/37300 [05:52<16:48:03, 1.63s/it]
|
726 |
1%| | 222/37300 [05:53<16:31:37, 1.60s/it]
|
727 |
1%| | 223/37300 [05:55<16:13:34, 1.58s/it]
|
728 |
1%| | 224/37300 [05:56<15:51:53, 1.54s/it]
|
729 |
1%| | 225/37300 [05:58<15:38:33, 1.52s/it]
|
730 |
1%| | 226/37300 [05:59<15:27:25, 1.50s/it]
|
731 |
1%| | 227/37300 [06:01<15:12:26, 1.48s/it]
|
732 |
1%| | 228/37300 [06:02<14:57:47, 1.45s/it]
|
733 |
1%| | 229/37300 [06:03<14:52:51, 1.45s/it]
|
734 |
1%| | 230/37300 [06:05<14:39:29, 1.42s/it]
|
735 |
1%| | 231/37300 [06:06<14:21:08, 1.39s/it]
|
736 |
1%| | 232/37300 [06:07<14:05:47, 1.37s/it]
|
737 |
1%| | 233/37300 [06:09<13:51:04, 1.35s/it]
|
738 |
1%| | 234/37300 [06:10<13:37:55, 1.32s/it]
|
739 |
1%| | 235/37300 [06:11<13:24:52, 1.30s/it]
|
740 |
1%| | 236/37300 [06:12<13:16:21, 1.29s/it]
|
741 |
1%| | 237/37300 [06:14<13:04:33, 1.27s/it]
|
742 |
1%| | 238/37300 [06:15<12:51:23, 1.25s/it]
|
743 |
1%| | 239/37300 [06:16<12:39:44, 1.23s/it]
|
744 |
1%| | 240/37300 [06:17<12:28:34, 1.21s/it]
|
745 |
1%| | 241/37300 [06:18<12:18:29, 1.20s/it]
|
746 |
1%| | 242/37300 [06:20<12:10:01, 1.18s/it]
|
747 |
1%| | 243/37300 [06:21<11:57:15, 1.16s/it]
|
748 |
1%| | 244/37300 [06:22<11:42:43, 1.14s/it]
|
749 |
1%| | 245/37300 [06:23<11:29:25, 1.12s/it]
|
750 |
1%| | 246/37300 [06:24<11:16:00, 1.09s/it]
|
751 |
1%| | 247/37300 [06:25<11:04:52, 1.08s/it]
|
752 |
1%| | 248/37300 [06:26<10:52:38, 1.06s/it]
|
753 |
1%| | 249/37300 [06:27<10:42:50, 1.04s/it]
|
754 |
1%| | 250/37300 [06:28<10:29:23, 1.02s/it]
|
755 |
1%| | 251/37300 [06:31<15:29:58, 1.51s/it]
|
756 |
1%| | 252/37300 [06:33<18:28:44, 1.80s/it]
|
757 |
1%| | 253/37300 [06:35<20:06:55, 1.95s/it]
|
758 |
1%| | 254/37300 [06:38<21:04:00, 2.05s/it]
|
759 |
1%| | 255/37300 [06:40<21:34:26, 2.10s/it]
|
760 |
1%| | 256/37300 [06:42<21:45:33, 2.11s/it]
|
761 |
1%| | 257/37300 [06:44<21:38:14, 2.10s/it]
|
762 |
1%| | 258/37300 [06:46<21:19:51, 2.07s/it]
|
763 |
1%| | 259/37300 [06:48<20:58:49, 2.04s/it]
|
764 |
1%| | 260/37300 [06:50<20:38:07, 2.01s/it]
|
765 |
1%| | 261/37300 [06:52<20:03:34, 1.95s/it]
|
766 |
1%| | 262/37300 [06:54<19:34:28, 1.90s/it]
|
767 |
1%| | 263/37300 [06:55<19:09:15, 1.86s/it]
|
768 |
1%| | 264/37300 [06:57<18:43:50, 1.82s/it]
|
769 |
1%| | 265/37300 [06:59<18:23:06, 1.79s/it]
|
770 |
1%| | 266/37300 [07:00<18:02:27, 1.75s/it]
|
771 |
1%| | 267/37300 [07:02<17:41:46, 1.72s/it]
|
772 |
1%| | 268/37300 [07:04<17:21:27, 1.69s/it]
|
773 |
1%| | 269/37300 [07:05<17:02:20, 1.66s/it]
|
774 |
1%| | 270/37300 [07:07<16:41:34, 1.62s/it]
|
775 |
1%| | 271/37300 [07:08<16:24:24, 1.60s/it]
|
776 |
1%| | 272/37300 [07:10<16:10:44, 1.57s/it]
|
777 |
1%| | 273/37300 [07:11<15:58:13, 1.55s/it]
|
778 |
1%| | 274/37300 [07:13<15:48:52, 1.54s/it]
|
779 |
1%| | 275/37300 [07:14<15:25:32, 1.50s/it]
|
780 |
1%| | 276/37300 [07:16<15:19:58, 1.49s/it]
|
781 |
1%| | 277/37300 [07:17<15:09:44, 1.47s/it]
|
782 |
1%| | 278/37300 [07:19<14:54:52, 1.45s/it]
|
783 |
1%| | 279/37300 [07:20<14:38:45, 1.42s/it]
|
784 |
1%| | 280/37300 [07:21<14:25:20, 1.40s/it]
|
785 |
1%| | 281/37300 [07:23<14:02:50, 1.37s/it]
|
786 |
1%| | 282/37300 [07:24<13:51:04, 1.35s/it]
|
787 |
1%| | 283/37300 [07:25<13:40:56, 1.33s/it]
|
788 |
1%| | 284/37300 [07:26<13:29:15, 1.31s/it]
|
789 |
1%| | 285/37300 [07:28<13:18:39, 1.29s/it]
|
790 |
1%| | 286/37300 [07:29<13:08:10, 1.28s/it]
|
791 |
1%| | 287/37300 [07:30<12:59:39, 1.26s/it]
|
792 |
1%| | 288/37300 [07:31<12:52:29, 1.25s/it]
|
793 |
1%| | 289/37300 [07:33<12:45:20, 1.24s/it]
|
794 |
1%| | 290/37300 [07:34<12:36:16, 1.23s/it]
|
795 |
1%| | 291/37300 [07:35<12:24:28, 1.21s/it]
|
796 |
1%| | 292/37300 [07:36<12:12:44, 1.19s/it]
|
797 |
1%| | 293/37300 [07:37<11:58:28, 1.16s/it]
|
798 |
1%| | 294/37300 [07:38<11:40:55, 1.14s/it]
|
799 |
1%| | 295/37300 [07:39<11:26:52, 1.11s/it]
|
800 |
1%| | 296/37300 [07:40<11:13:02, 1.09s/it]
|
801 |
1%| | 297/37300 [07:41<11:04:15, 1.08s/it]
|
802 |
1%| | 298/37300 [07:42<11:03:23, 1.08s/it]
|
803 |
1%| | 299/37300 [07:44<11:00:40, 1.07s/it]
|
804 |
1%| | 300/37300 [07:45<10:55:45, 1.06s/it]
|
805 |
|
806 |
1%| | 300/37300 [07:45<10:55:45, 1.06s/it]
|
807 |
1%| | 301/37300 [07:47<16:10:58, 1.57s/it]
|
808 |
1%| | 302/37300 [07:50<19:12:13, 1.87s/it]
|
809 |
1%| | 303/37300 [07:52<20:47:24, 2.02s/it]
|
810 |
1%| | 304/37300 [07:55<21:33:25, 2.10s/it]
|
811 |
1%| | 305/37300 [07:57<21:50:10, 2.12s/it]
|
812 |
1%| | 306/37300 [07:59<21:47:30, 2.12s/it]
|
813 |
1%| | 307/37300 [08:01<21:32:10, 2.10s/it]
|
814 |
1%| | 308/37300 [08:03<21:16:45, 2.07s/it]
|
815 |
1%| | 309/37300 [08:05<20:45:55, 2.02s/it]
|
816 |
1%| | 310/37300 [08:07<20:20:14, 1.98s/it]
|
817 |
1%| | 311/37300 [08:09<19:54:30, 1.94s/it]
|
818 |
1%| | 312/37300 [08:10<19:26:14, 1.89s/it]
|
819 |
1%| | 313/37300 [08:12<19:03:03, 1.85s/it]
|
820 |
1%| | 314/37300 [08:14<18:36:53, 1.81s/it]
|
821 |
1%| | 315/37300 [08:15<18:18:38, 1.78s/it]
|
822 |
1%| | 316/37300 [08:17<17:59:06, 1.75s/it]
|
823 |
1%| | 317/37300 [08:19<17:42:03, 1.72s/it]
|
824 |
1%| | 318/37300 [08:20<17:25:54, 1.70s/it]
|
825 |
1%| | 319/37300 [08:22<17:09:21, 1.67s/it]
|
826 |
1%| | 320/37300 [08:24<16:58:56, 1.65s/it]
|
827 |
1%| | 321/37300 [08:25<16:45:02, 1.63s/it]
|
828 |
1%| | 322/37300 [08:27<16:20:16, 1.59s/it]
|
829 |
1%| | 323/37300 [08:28<15:56:38, 1.55s/it]
|
830 |
1%| | 324/37300 [08:30<15:37:13, 1.52s/it]
|
831 |
1%| | 325/37300 [08:31<15:21:09, 1.49s/it]
|
832 |
1%| | 326/37300 [08:33<15:06:23, 1.47s/it]
|
833 |
1%| | 327/37300 [08:34<14:57:39, 1.46s/it]
|
834 |
1%| | 328/37300 [08:35<14:49:20, 1.44s/it]
|
835 |
1%| | 329/37300 [08:37<14:39:49, 1.43s/it]
|
836 |
1%| | 330/37300 [08:38<14:27:18, 1.41s/it]
|
837 |
1%| | 331/37300 [08:39<13:59:32, 1.36s/it]
|
838 |
1%| | 332/37300 [08:41<13:33:00, 1.32s/it]
|
839 |
1%| | 333/37300 [08:42<13:10:45, 1.28s/it]
|
840 |
1%| | 334/37300 [08:43<12:51:01, 1.25s/it]
|
841 |
1%| | 335/37300 [08:44<12:44:14, 1.24s/it]
|
842 |
1%| | 336/37300 [08:45<12:40:36, 1.23s/it]
|
843 |
1%| | 337/37300 [08:47<12:35:46, 1.23s/it]
|
844 |
1%| | 338/37300 [08:48<12:31:18, 1.22s/it]
|
845 |
1%| | 339/37300 [08:49<12:28:38, 1.22s/it]
|
846 |
1%| | 340/37300 [08:50<12:20:34, 1.20s/it]
|
847 |
1%| | 341/37300 [08:51<12:14:34, 1.19s/it]
|
848 |
1%| | 342/37300 [08:53<12:11:17, 1.19s/it]
|
849 |
1%| | 343/37300 [08:54<12:02:42, 1.17s/it]
|
850 |
1%| | 344/37300 [08:55<11:49:23, 1.15s/it]
|
851 |
1%| | 345/37300 [08:56<11:34:14, 1.13s/it]
|
852 |
1%| | 346/37300 [08:57<11:24:38, 1.11s/it]
|
853 |
1%| | 347/37300 [08:58<11:17:38, 1.10s/it]
|
854 |
1%| | 348/37300 [08:59<11:07:13, 1.08s/it]
|
855 |
1%| | 349/37300 [09:00<11:01:01, 1.07s/it]
|
856 |
1%| | 350/37300 [09:01<10:51:43, 1.06s/it]
|
857 |
1%| | 351/37300 [09:04<15:53:24, 1.55s/it]
|
858 |
1%| | 352/37300 [09:06<18:25:47, 1.80s/it]
|
859 |
1%| | 353/37300 [09:08<19:34:30, 1.91s/it]
|
860 |
1%| | 354/37300 [09:10<19:51:19, 1.93s/it]
|
861 |
1%| | 355/37300 [09:12<19:55:51, 1.94s/it]
|
862 |
1%| | 356/37300 [09:14<19:22:22, 1.89s/it]
|
863 |
1%| | 357/37300 [09:16<18:51:28, 1.84s/it]
|
864 |
1%| | 358/37300 [09:17<18:19:14, 1.79s/it]
|
865 |
1%| | 359/37300 [09:19<17:44:58, 1.73s/it]
|
866 |
1%| | 360/37300 [09:21<17:08:49, 1.67s/it]
|
867 |
1%| | 361/37300 [09:22<16:34:13, 1.61s/it]
|
868 |
1%| | 362/37300 [09:24<16:03:16, 1.56s/it]
|
869 |
1%| | 363/37300 [09:25<15:38:10, 1.52s/it]
|
870 |
1%| | 364/37300 [09:26<15:09:52, 1.48s/it]
|
871 |
1%| | 365/37300 [09:28<14:35:35, 1.42s/it]
|
872 |
1%| | 366/37300 [09:29<14:03:17, 1.37s/it]
|
873 |
1%| | 367/37300 [09:30<13:37:19, 1.33s/it]
|
874 |
1%| | 368/37300 [09:31<13:13:03, 1.29s/it]
|
875 |
1%| | 369/37300 [09:32<12:51:08, 1.25s/it]
|
876 |
1%| | 370/37300 [09:34<12:38:03, 1.23s/it]
|
877 |
1%| | 371/37300 [09:35<12:28:26, 1.22s/it]
|
878 |
1%| | 372/37300 [09:36<12:14:34, 1.19s/it]
|
879 |
1%| | 373/37300 [09:37<12:02:00, 1.17s/it]
|
880 |
1%| | 374/37300 [09:40<18:23:02, 1.79s/it]
|
881 |
1%| | 375/37300 [09:43<21:07:36, 2.06s/it]
|
882 |
1%| | 376/37300 [09:46<22:35:22, 2.20s/it]
|
883 |
1%| | 377/37300 [09:48<23:14:10, 2.27s/it]
|
884 |
1%| | 378/37300 [09:50<23:30:37, 2.29s/it]
|
885 |
1%| | 379/37300 [09:53<23:30:25, 2.29s/it]
|
886 |
1%| | 380/37300 [09:55<23:05:48, 2.25s/it]
|
887 |
1%| | 381/37300 [09:57<22:25:43, 2.19s/it]
|
888 |
1%| | 382/37300 [09:59<21:33:51, 2.10s/it]
|
889 |
1%| | 383/37300 [10:01<20:54:02, 2.04s/it]
|
890 |
1%| | 384/37300 [10:02<20:13:07, 1.97s/it]
|
891 |
1%| | 385/37300 [10:04<19:38:56, 1.92s/it]
|
892 |
1%| | 386/37300 [10:06<19:08:45, 1.87s/it]
|
893 |
1%| | 387/37300 [10:08<18:41:06, 1.82s/it]
|
894 |
1%| | 388/37300 [10:09<18:14:14, 1.78s/it]
|
895 |
1%| | 389/37300 [10:11<17:53:33, 1.75s/it]
|
896 |
1%| | 390/37300 [10:13<17:33:59, 1.71s/it]
|
897 |
1%| | 391/37300 [10:14<17:23:13, 1.70s/it]
|
898 |
1%| | 392/37300 [10:16<17:04:20, 1.67s/it]
|
899 |
1%| | 393/37300 [10:17<16:42:16, 1.63s/it]
|
900 |
1%| | 394/37300 [10:19<16:25:13, 1.60s/it]
|
901 |
1%| | 395/37300 [10:21<16:16:03, 1.59s/it]
|
902 |
1%| | 396/37300 [10:22<15:51:12, 1.55s/it]
|
903 |
1%| | 397/37300 [10:23<15:31:56, 1.52s/it]
|
904 |
1%| | 398/37300 [10:25<15:21:09, 1.50s/it]
|
905 |
1%| | 399/37300 [10:26<15:11:11, 1.48s/it]
|
906 |
1%| | 400/37300 [10:28<15:00:01, 1.46s/it]
|
907 |
|
908 |
1%| | 400/37300 [10:28<15:00:01, 1.46s/it]
|
909 |
1%| | 401/37300 [10:29<14:47:32, 1.44s/it]
|
910 |
1%| | 402/37300 [10:31<14:38:28, 1.43s/it]
|
911 |
1%| | 403/37300 [10:32<14:24:39, 1.41s/it]
|
912 |
1%| | 404/37300 [10:33<14:03:43, 1.37s/it]
|
913 |
1%| | 405/37300 [10:34<13:52:50, 1.35s/it]
|
914 |
1%| | 406/37300 [10:36<13:39:16, 1.33s/it]
|
915 |
1%| | 407/37300 [10:37<13:23:59, 1.31s/it]
|
916 |
1%| | 408/37300 [10:38<13:13:51, 1.29s/it]
|
917 |
1%| | 409/37300 [10:39<13:00:44, 1.27s/it]
|
918 |
1%| | 410/37300 [10:41<13:07:06, 1.28s/it]
|
919 |
1%| | 411/37300 [10:42<13:04:49, 1.28s/it]
|
920 |
1%| | 412/37300 [10:43<12:59:21, 1.27s/it]
|
921 |
1%| | 413/37300 [10:45<12:54:01, 1.26s/it]
|
922 |
1%| | 414/37300 [10:46<12:36:07, 1.23s/it]
|
923 |
1%| | 415/37300 [10:47<12:23:33, 1.21s/it]
|
924 |
1%| | 416/37300 [10:48<12:13:15, 1.19s/it]
|
925 |
1%| | 417/37300 [10:49<11:52:20, 1.16s/it]
|
926 |
1%| | 418/37300 [10:50<11:43:37, 1.14s/it]
|
927 |
1%| | 419/37300 [10:51<11:26:02, 1.12s/it]
|
928 |
1%| | 420/37300 [10:52<11:09:22, 1.09s/it]
|
929 |
1%| | 421/37300 [10:53<10:54:00, 1.06s/it]
|
930 |
1%| | 422/37300 [10:54<10:38:28, 1.04s/it]
|
931 |
1%| | 423/37300 [10:55<10:23:41, 1.01s/it]
|
932 |
1%| | 424/37300 [10:58<15:23:42, 1.50s/it]
|
933 |
1%| | 425/37300 [11:00<18:33:47, 1.81s/it]
|
934 |
1%| | 426/37300 [11:03<20:13:15, 1.97s/it]
|
935 |
1%| | 427/37300 [11:05<21:18:42, 2.08s/it]
|
936 |
1%| | 428/37300 [11:07<21:46:07, 2.13s/it]
|
937 |
1%| | 429/37300 [11:09<21:49:41, 2.13s/it]
|
938 |
1%| | 430/37300 [11:12<21:44:41, 2.12s/it]
|
939 |
1%| | 431/37300 [11:14<21:30:55, 2.10s/it]
|
940 |
1%| | 432/37300 [11:16<21:14:23, 2.07s/it]
|
941 |
1%| | 433/37300 [11:18<20:43:34, 2.02s/it]
|
942 |
1%| | 434/37300 [11:19<20:18:57, 1.98s/it]
|
943 |
1%| | 435/37300 [11:21<19:47:27, 1.93s/it]
|
944 |
1%| | 436/37300 [11:23<19:22:53, 1.89s/it]
|
945 |
1%| | 437/37300 [11:25<19:00:48, 1.86s/it]
|
946 |
1%| | 438/37300 [11:27<18:51:44, 1.84s/it]
|
947 |
1%| | 439/37300 [11:28<18:27:19, 1.80s/it]
|
948 |
1%| | 440/37300 [11:30<18:08:23, 1.77s/it]
|
949 |
1%| | 441/37300 [11:32<17:47:58, 1.74s/it]
|
950 |
1%| | 442/37300 [11:33<17:31:46, 1.71s/it]
|
951 |
1%| | 443/37300 [11:35<17:14:11, 1.68s/it]
|
952 |
1%| | 444/37300 [11:37<16:54:51, 1.65s/it]
|
953 |
1%| | 445/37300 [11:38<16:40:53, 1.63s/it]
|
954 |
1%| | 446/37300 [11:40<16:22:57, 1.60s/it]
|
955 |
1%| | 447/37300 [11:41<16:05:18, 1.57s/it]
|
956 |
1%| | 448/37300 [11:43<15:49:17, 1.55s/it]
|
957 |
1%| | 449/37300 [11:44<15:38:40, 1.53s/it]
|
958 |
1%| | 450/37300 [11:46<15:24:17, 1.50s/it]
|
959 |
1%| | 451/37300 [11:47<15:09:51, 1.48s/it]
|
960 |
1%| | 452/37300 [11:48<14:56:31, 1.46s/it]
|
961 |
1%| | 453/37300 [11:50<14:41:32, 1.44s/it]
|
962 |
1%| | 454/37300 [11:51<14:31:58, 1.42s/it]
|
963 |
1%| | 455/37300 [11:52<14:12:11, 1.39s/it]
|
964 |
1%| | 456/37300 [11:54<13:56:00, 1.36s/it]
|
965 |
1%| | 457/37300 [11:55<13:37:46, 1.33s/it]
|
966 |
1%| | 458/37300 [11:56<13:19:43, 1.30s/it]
|
967 |
1%| | 459/37300 [11:58<13:08:43, 1.28s/it]
|
968 |
1%| | 460/37300 [11:59<12:55:34, 1.26s/it]
|
969 |
1%| | 461/37300 [12:00<12:50:36, 1.26s/it]
|
970 |
1%| | 462/37300 [12:01<12:42:06, 1.24s/it]
|
971 |
1%| | 463/37300 [12:02<12:31:09, 1.22s/it]
|
972 |
1%| | 464/37300 [12:04<12:19:40, 1.20s/it]
|
973 |
1%| | 465/37300 [12:05<12:09:04, 1.19s/it]
|
974 |
1%| | 466/37300 [12:06<11:57:00, 1.17s/it]
|
975 |
1%|▏ | 467/37300 [12:07<11:40:36, 1.14s/it]
|
976 |
1%|▏ | 468/37300 [12:08<11:26:55, 1.12s/it]
|
977 |
1%|▏ | 469/37300 [12:09<11:13:20, 1.10s/it]
|
978 |
1%|▏ | 470/37300 [12:10<11:00:30, 1.08s/it]
|
979 |
1%|▏ | 471/37300 [12:11<10:49:08, 1.06s/it]
|
980 |
1%|▏ | 472/37300 [12:12<10:36:47, 1.04s/it]
|
981 |
1%|▏ | 473/37300 [12:13<10:23:46, 1.02s/it]
|
982 |
1%|▏ | 474/37300 [12:16<15:07:13, 1.48s/it]
|
983 |
1%|▏ | 475/37300 [12:18<18:21:41, 1.80s/it]
|
984 |
1%|▏ | 476/37300 [12:20<20:09:53, 1.97s/it]
|
985 |
1%|▏ | 477/37300 [12:23<21:01:58, 2.06s/it]
|
986 |
1%|▏ | 478/37300 [12:25<21:27:36, 2.10s/it]
|
987 |
1%|▏ | 479/37300 [12:27<21:35:40, 2.11s/it]
|
988 |
1%|▏ | 480/37300 [12:29<21:23:24, 2.09s/it]
|
989 |
1%|▏ | 481/37300 [12:31<21:10:37, 2.07s/it]
|
990 |
1%|▏ | 482/37300 [12:33<20:46:29, 2.03s/it]
|
991 |
1%|▏ | 483/37300 [12:35<20:20:44, 1.99s/it]
|
992 |
1%|▏ | 484/37300 [12:37<19:52:00, 1.94s/it]
|
993 |
1%|▏ | 485/37300 [12:39<19:23:01, 1.90s/it]
|
994 |
1%|▏ | 486/37300 [12:40<19:02:47, 1.86s/it]
|
995 |
1%|▏ | 487/37300 [12:42<18:35:06, 1.82s/it]
|
996 |
1%|▏ | 488/37300 [12:44<18:10:05, 1.78s/it]
|
997 |
1%|▏ | 489/37300 [12:45<17:56:05, 1.75s/it]
|
998 |
1%|▏ | 490/37300 [12:47<17:39:09, 1.73s/it]
|
999 |
1%|▏ | 491/37300 [12:49<17:27:46, 1.71s/it]
|
1000 |
1%|▏ | 492/37300 [12:50<17:15:08, 1.69s/it]
|
1001 |
1%|▏ | 493/37300 [12:52<16:57:58, 1.66s/it]
|
1002 |
1%|▏ | 494/37300 [12:54<16:42:08, 1.63s/it]
|
1003 |
1%|▏ | 495/37300 [12:55<16:29:22, 1.61s/it]
|
1004 |
1%|▏ | 496/37300 [12:57<16:13:01, 1.59s/it]
|
1005 |
1%|▏ | 497/37300 [12:58<15:59:08, 1.56s/it]
|
1006 |
1%|▏ | 498/37300 [13:00<15:37:34, 1.53s/it]
|
1007 |
1%|▏ | 499/37300 [13:01<15:14:28, 1.49s/it]
|
1008 |
1%|▏ | 500/37300 [13:02<14:56:05, 1.46s/it]
|
1009 |
|
1010 |
1%|▏ | 500/37300 [13:02<14:56:05, 1.46s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.
|
1011 |
+
***** Running Evaluation *****
|
1012 |
+
Num examples = 2302
|
1013 |
+
Batch size = 8
|
1014 |
+
{'loss': 153.5094, 'learning_rate': 4.85e-06, 'epoch': 0.27}
|
1015 |
+
{'loss': 108.8648, 'learning_rate': 9.85e-06, 'epoch': 0.54}
|
1016 |
+
{'loss': 92.5714, 'learning_rate': 1.48e-05, 'epoch': 0.8}
|
1017 |
+
{'loss': 79.9356, 'learning_rate': 1.9800000000000004e-05, 'epoch': 1.07}
|
1018 |
+
{'loss': 69.8341, 'learning_rate': 2.48e-05, 'epoch': 1.34}
|
1019 |
+
|
1020 |
+
|
1021 |
0%| | 0/288 [00:00<?, ?it/s][A
|
1022 |
+
|
1023 |
1%| | 2/288 [00:00<00:39, 7.26it/s][A
|
1024 |
+
|
1025 |
1%| | 3/288 [00:00<01:06, 4.26it/s][A
|
1026 |
+
|
1027 |
1%|▏ | 4/288 [00:00<01:15, 3.75it/s][A
|
1028 |
+
|
1029 |
2%|▏ | 5/288 [00:01<01:13, 3.84it/s][A
|
1030 |
+
|
1031 |
2%|▏ | 6/288 [00:01<01:15, 3.74it/s][A
|
1032 |
+
|
1033 |
2%|▏ | 7/288 [00:01<01:18, 3.57it/s][A
|
1034 |
+
|
1035 |
3%|▎ | 8/288 [00:02<01:15, 3.72it/s][A
|
1036 |
+
|
1037 |
3%|▎ | 9/288 [00:02<01:19, 3.53it/s][A
|
1038 |
+
|
1039 |
3%|▎ | 10/288 [00:02<01:27, 3.17it/s][A
|
1040 |
+
|
1041 |
4%|▍ | 11/288 [00:03<01:29, 3.10it/s][A
|
1042 |
+
|
1043 |
4%|▍ | 12/288 [00:03<01:24, 3.28it/s][A
|
1044 |
+
|
1045 |
5%|▍ | 13/288 [00:03<01:25, 3.21it/s][A
|
1046 |
+
|
1047 |
5%|▍ | 14/288 [00:03<01:24, 3.23it/s][A
|
1048 |
+
|
1049 |
5%|▌ | 15/288 [00:04<01:21, 3.36it/s][A
|
1050 |
+
|
1051 |
6%|▌ | 16/288 [00:04<01:22, 3.30it/s][A
|
1052 |
+
|
1053 |
6%|▌ | 17/288 [00:04<01:21, 3.34it/s][A
|
1054 |
+
|
1055 |
6%|▋ | 18/288 [00:05<01:23, 3.21it/s][A
|
1056 |
+
|
1057 |
7%|▋ | 19/288 [00:05<01:26, 3.12it/s][A
|
1058 |
+
|
1059 |
7%|▋ | 20/288 [00:05<01:23, 3.21it/s][A
|
1060 |
+
|
1061 |
7%|▋ | 21/288 [00:06<01:22, 3.24it/s][A
|
1062 |
+
|
1063 |
8%|▊ | 22/288 [00:06<01:20, 3.30it/s][A
|
1064 |
+
|
1065 |
8%|▊ | 23/288 [00:06<01:22, 3.20it/s][A
|
1066 |
+
|
1067 |
8%|▊ | 24/288 [00:07<01:24, 3.12it/s][A
|
1068 |
+
|
1069 |
9%|▊ | 25/288 [00:07<01:23, 3.15it/s][A
|
1070 |
+
|
1071 |
9%|▉ | 26/288 [00:07<01:27, 2.99it/s][A
|
1072 |
+
|
1073 |
9%|▉ | 27/288 [00:08<01:26, 3.01it/s][A
|
1074 |
+
|
1075 |
10%|▉ | 28/288 [00:08<01:23, 3.11it/s][A
|
1076 |
+
|
1077 |
10%|█ | 29/288 [00:08<01:19, 3.26it/s][A
|
1078 |
+
|
1079 |
10%|█ | 30/288 [00:08<01:11, 3.60it/s][A
|
1080 |
+
|
1081 |
11%|█ | 31/288 [00:09<01:10, 3.66it/s][A
|
1082 |
+
|
1083 |
11%|█ | 32/288 [00:09<01:12, 3.52it/s][A
|
1084 |
+
|
1085 |
11%|█▏ | 33/288 [00:09<01:10, 3.62it/s][A
|
1086 |
+
|
1087 |
12%|█▏ | 34/288 [00:10<01:11, 3.55it/s][A
|
1088 |
+
|
1089 |
12%|█▏ | 35/288 [00:10<01:12, 3.48it/s][A
|
1090 |
+
|
1091 |
12%|█▎ | 36/288 [00:10<01:14, 3.40it/s][A
|
1092 |
+
|
1093 |
13%|█▎ | 37/288 [00:10<01:13, 3.40it/s][A
|
1094 |
+
|
1095 |
13%|█▎ | 38/288 [00:11<01:13, 3.41it/s][A
|
1096 |
+
|
1097 |
14%|█▎ | 39/288 [00:11<01:14, 3.34it/s][A
|
1098 |
+
|
1099 |
14%|█▍ | 40/288 [00:11<01:17, 3.19it/s][A
|
1100 |
+
|
1101 |
14%|█▍ | 41/288 [00:12<01:15, 3.26it/s][A
|
1102 |
+
|
1103 |
15%|█▍ | 42/288 [00:12<01:17, 3.16it/s][A
|
1104 |
+
|
1105 |
15%|█▍ | 43/288 [00:12<01:18, 3.11it/s][A
|
1106 |
+
|
1107 |
15%|█▌ | 44/288 [00:13<01:17, 3.15it/s][A
|
1108 |
+
|
1109 |
16%|█▌ | 45/288 [00:13<01:17, 3.13it/s][A
|
1110 |
+
|
1111 |
16%|█▌ | 46/288 [00:13<01:16, 3.16it/s][A
|
1112 |
+
|
1113 |
16%|█▋ | 47/288 [00:14<01:20, 3.01it/s][A
|
1114 |
+
|
1115 |
17%|█▋ | 48/288 [00:14<01:24, 2.85it/s][A
|
1116 |
+
|
1117 |
17%|█▋ | 49/288 [00:14<01:20, 2.96it/s][A
|
1118 |
+
|
1119 |
17%|█▋ | 50/288 [00:15<01:18, 3.05it/s][A
|
1120 |
+
|
1121 |
18%|█▊ | 51/288 [00:15<01:16, 3.08it/s][A
|
1122 |
+
|
1123 |
18%|█▊ | 52/288 [00:15<01:19, 2.95it/s][A
|
1124 |
+
|
1125 |
18%|█▊ | 53/288 [00:16<01:21, 2.88it/s][A
|
1126 |
+
|
1127 |
19%|█▉ | 54/288 [00:16<01:19, 2.95it/s][A
|
1128 |
+
|
1129 |
19%|█▉ | 55/288 [00:16<01:22, 2.84it/s][A
|
1130 |
+
|
1131 |
19%|█▉ | 56/288 [00:17<01:19, 2.91it/s][A
|
1132 |
+
|
1133 |
20%|█▉ | 57/288 [00:17<01:15, 3.08it/s][A
|
1134 |
+
|
1135 |
20%|██ | 58/288 [00:17<01:10, 3.24it/s][A
|
1136 |
+
|
1137 |
20%|██ | 59/288 [00:18<01:07, 3.37it/s][A
|
1138 |
+
|
1139 |
21%|██ | 60/288 [00:18<01:04, 3.56it/s][A
|
1140 |
+
|
1141 |
21%|██ | 61/288 [00:18<01:08, 3.33it/s][A
|
1142 |
+
|
1143 |
22%|██▏ | 62/288 [00:18<01:08, 3.28it/s][A
|
1144 |
+
|
1145 |
22%|██▏ | 63/288 [00:19<01:09, 3.23it/s][A
|
1146 |
+
|
1147 |
22%|██▏ | 64/288 [00:19<01:07, 3.32it/s][A
|
1148 |
+
|
1149 |
23%|██▎ | 65/288 [00:19<01:10, 3.17it/s][A
|
1150 |
+
|
1151 |
23%|██▎ | 66/288 [00:20<01:11, 3.10it/s][A
|
1152 |
+
|
1153 |
23%|██▎ | 67/288 [00:20<01:09, 3.16it/s][A
|
1154 |
+
|
1155 |
24%|██▎ | 68/288 [00:20<01:11, 3.09it/s][A
|
1156 |
+
|
1157 |
24%|██▍ | 69/288 [00:21<01:12, 3.04it/s][A
|
1158 |
+
|
1159 |
24%|██▍ | 70/288 [00:21<01:10, 3.07it/s][A
|
1160 |
+
|
1161 |
25%|██▍ | 71/288 [00:21<01:13, 2.95it/s][A
|
1162 |
+
|
1163 |
25%|██▌ | 72/288 [00:22<01:16, 2.84it/s][A
|
1164 |
+
|
1165 |
25%|██▌ | 73/288 [00:22<01:14, 2.89it/s][A
|
1166 |
+
|
1167 |
26%|██▌ | 74/288 [00:22<01:14, 2.88it/s][A
|
1168 |
+
|
1169 |
26%|██▌ | 75/288 [00:23<01:14, 2.87it/s][A
|
1170 |
+
|
1171 |
26%|██▋ | 76/288 [00:23<01:10, 2.99it/s][A
|
1172 |
+
|
1173 |
27%|██▋ | 77/288 [00:23<01:10, 2.98it/s][A
|
1174 |
+
|
1175 |
27%|██▋ | 78/288 [00:24<01:09, 3.04it/s][A
|
1176 |
+
|
1177 |
27%|██▋ | 79/288 [00:24<01:07, 3.11it/s][A
|
1178 |
+
|
1179 |
28%|██▊ | 80/288 [00:24<01:05, 3.20it/s][A
|
1180 |
+
|
1181 |
28%|██▊ | 81/288 [00:25<01:07, 3.06it/s][A
|
1182 |
+
|
1183 |
28%|██▊ | 82/288 [00:25<01:05, 3.13it/s][A
|
1184 |
+
|
1185 |
29%|██▉ | 83/288 [00:25<01:05, 3.13it/s][A
|
1186 |
+
|
1187 |
29%|██▉ | 84/288 [00:26<01:00, 3.39it/s][A
|
1188 |
+
|
1189 |
30%|██▉ | 85/288 [00:26<00:58, 3.44it/s][A
|
1190 |
+
|
1191 |
30%|██▉ | 86/288 [00:26<01:02, 3.24it/s][A
|
1192 |
+
|
1193 |
30%|███ | 87/288 [00:27<01:07, 2.99it/s][A
|
1194 |
+
|
1195 |
31%|███ | 88/288 [00:27<01:06, 2.99it/s][A
|
1196 |
+
|
1197 |
31%|███ | 89/288 [00:27<01:04, 3.09it/s][A
|
1198 |
+
|
1199 |
31%|███▏ | 90/288 [00:28<01:02, 3.17it/s][A
|
1200 |
+
|
1201 |
32%|███▏ | 91/288 [00:28<01:03, 3.12it/s][A
|
1202 |
+
|
1203 |
32%|███▏ | 92/288 [00:28<01:02, 3.15it/s][A
|
1204 |
+
|
1205 |
32%|███▏ | 93/288 [00:29<01:03, 3.06it/s][A
|
1206 |
+
|
1207 |
33%|███▎ | 94/288 [00:29<01:02, 3.09it/s][A
|
1208 |
+
|
1209 |
33%|███▎ | 95/288 [00:29<01:02, 3.08it/s][A
|
1210 |
+
|
1211 |
33%|███▎ | 96/288 [00:29<00:58, 3.26it/s][A
|
1212 |
+
|
1213 |
34%|███▎ | 97/288 [00:30<00:56, 3.36it/s][A
|
1214 |
+
|
1215 |
34%|███▍ | 98/288 [00:30<00:58, 3.24it/s][A
|
1216 |
+
|
1217 |
34%|███▍ | 99/288 [00:30<01:00, 3.11it/s][A
|
1218 |
+
|
1219 |
35%|███▍ | 100/288 [00:31<01:05, 2.87it/s][A
|
1220 |
+
|
1221 |
35%|███▌ | 101/288 [00:31<01:03, 2.97it/s][A
|
1222 |
+
|
1223 |
35%|███▌ | 102/288 [00:31<00:59, 3.11it/s][A
|
1224 |
+
|
1225 |
36%|███▌ | 103/288 [00:32<00:58, 3.17it/s][A
|
1226 |
+
|
1227 |
36%|███▌ | 104/288 [00:32<00:58, 3.13it/s][A
|
1228 |
+
|
1229 |
36%|███▋ | 105/288 [00:32<00:55, 3.31it/s][A
|
1230 |
+
|
1231 |
37%|███▋ | 106/288 [00:33<00:57, 3.16it/s][A
|
1232 |
+
|
1233 |
37%|███▋ | 107/288 [00:33<00:57, 3.15it/s][A
|
1234 |
+
|
1235 |
38%|███▊ | 108/288 [00:33<00:57, 3.13it/s][A
|
1236 |
+
|
1237 |
38%|███▊ | 109/288 [00:34<00:57, 3.11it/s][A
|
1238 |
+
|
1239 |
38%|███▊ | 110/288 [00:34<00:56, 3.15it/s][A
|
1240 |
+
|
1241 |
39%|███▊ | 111/288 [00:34<01:02, 2.82it/s][A
|
1242 |
+
|
1243 |
39%|███▉ | 112/288 [00:35<01:01, 2.85it/s][A
|
1244 |
+
|
1245 |
39%|███▉ | 113/288 [00:35<00:59, 2.93it/s][A
|
1246 |
+
|
1247 |
40%|███▉ | 114/288 [00:35<00:58, 2.96it/s][A
|
1248 |
+
|
1249 |
40%|███▉ | 115/288 [00:36<00:56, 3.06it/s][A
|
1250 |
+
|
1251 |
40%|████ | 116/288 [00:36<00:56, 3.02it/s][A
|
1252 |
+
|
1253 |
41%|████ | 117/288 [00:36<00:55, 3.06it/s][A
|
1254 |
+
|
1255 |
41%|████ | 118/288 [00:37<00:52, 3.23it/s][A
|
1256 |
+
|
1257 |
41%|████▏ | 119/288 [00:37<00:53, 3.13it/s][A
|
1258 |
+
|
1259 |
42%|████▏ | 120/288 [00:37<01:00, 2.78it/s][A
|
1260 |
+
|
1261 |
42%|████▏ | 121/288 [00:38<00:56, 2.94it/s][A
|
1262 |
+
|
1263 |
42%|████▏ | 122/288 [00:38<00:51, 3.20it/s][A
|
1264 |
+
|
1265 |
43%|████▎ | 123/288 [00:38<00:54, 3.05it/s][A
|
1266 |
+
|
1267 |
43%|████▎ | 124/288 [00:39<00:53, 3.07it/s][A
|
1268 |
+
|
1269 |
43%|████▎ | 125/288 [00:39<00:52, 3.10it/s][A
|
1270 |
+
|
1271 |
44%|████▍ | 126/288 [00:39<00:54, 2.99it/s][A
|
1272 |
+
|
1273 |
44%|████▍ | 127/288 [00:40<00:52, 3.07it/s][A
|
1274 |
+
|
1275 |
44%|████▍ | 128/288 [00:40<00:51, 3.08it/s][A
|
1276 |
+
|
1277 |
45%|████▍ | 129/288 [00:41<01:05, 2.41it/s][A
|
1278 |
+
|
1279 |
45%|████▌ | 130/288 [00:41<01:01, 2.56it/s][A
|
1280 |
+
|
1281 |
45%|████▌ | 131/288 [00:41<00:57, 2.75it/s][A
|
1282 |
+
|
1283 |
46%|████▌ | 132/288 [00:42<00:55, 2.83it/s][A
|
1284 |
+
|
1285 |
46%|████▌ | 133/288 [00:42<00:55, 2.78it/s][A
|
1286 |
+
|
1287 |
47%|████▋ | 134/288 [00:42<00:55, 2.77it/s][A
|
1288 |
+
|
1289 |
47%|████▋ | 135/288 [00:43<00:53, 2.85it/s][A
|
1290 |
+
|
1291 |
47%|████▋ | 136/288 [00:43<00:51, 2.93it/s][A
|
1292 |
+
|
1293 |
48%|████▊ | 137/288 [00:43<01:01, 2.47it/s][A
|
1294 |
+
|
1295 |
48%|████▊ | 138/288 [00:44<00:58, 2.57it/s][A
|
1296 |
+
|
1297 |
48%|████▊ | 139/288 [00:44<00:55, 2.66it/s][A
|
1298 |
+
|
1299 |
49%|████▊ | 140/288 [00:45<00:53, 2.74it/s][A
|
1300 |
+
|
1301 |
49%|████▉ | 141/288 [00:45<00:53, 2.74it/s][A
|
1302 |
+
|
1303 |
49%|████▉ | 142/288 [00:45<00:50, 2.87it/s][A
|
1304 |
+
|
1305 |
50%|████▉ | 143/288 [00:46<00:50, 2.87it/s][A
|
1306 |
+
|
1307 |
50%|█████ | 144/288 [00:46<00:50, 2.85it/s][A
|
1308 |
+
|
1309 |
50%|█████ | 145/288 [00:46<00:49, 2.88it/s][A
|
1310 |
+
|
1311 |
51%|█████ | 146/288 [00:47<00:47, 3.00it/s][A
|
1312 |
+
|
1313 |
51%|█████ | 147/288 [00:47<00:45, 3.10it/s][A
|
1314 |
+
|
1315 |
51%|█████▏ | 148/288 [00:47<00:45, 3.08it/s][A
|
1316 |
+
|
1317 |
52%|█████▏ | 149/288 [00:47<00:44, 3.10it/s][A
|
1318 |
+
|
1319 |
52%|█████▏ | 150/288 [00:48<00:44, 3.13it/s][A
|
1320 |
+
|
1321 |
52%|█████▏ | 151/288 [00:48<00:49, 2.77it/s][A
|
1322 |
+
|
1323 |
53%|█████▎ | 152/288 [00:49<00:48, 2.82it/s][A
|
1324 |
+
|
1325 |
53%|█████▎ | 153/288 [00:49<00:45, 2.99it/s][A
|
1326 |
+
|
1327 |
53%|█████▎ | 154/288 [00:49<00:45, 2.93it/s][A
|
1328 |
+
|
1329 |
54%|█████▍ | 155/288 [00:50<00:44, 2.96it/s][A
|
1330 |
+
|
1331 |
54%|█████▍ | 156/288 [00:50<00:43, 3.03it/s][A
|
1332 |
+
|
1333 |
55%|███���█▍ | 157/288 [00:50<00:43, 3.03it/s][A
|
1334 |
+
|
1335 |
55%|█████▍ | 158/288 [00:51<00:50, 2.58it/s][A
|
1336 |
+
|
1337 |
55%|█████▌ | 159/288 [00:51<00:47, 2.69it/s][A
|
1338 |
+
|
1339 |
56%|█████▌ | 160/288 [00:51<00:44, 2.88it/s][A
|
1340 |
+
|
1341 |
56%|█████▌ | 161/288 [00:52<00:41, 3.02it/s][A
|
1342 |
+
|
1343 |
56%|█████▋ | 162/288 [00:52<00:40, 3.14it/s][A
|
1344 |
+
|
1345 |
57%|█████▋ | 163/288 [00:52<00:40, 3.09it/s][A
|
1346 |
+
|
1347 |
57%|█████▋ | 164/288 [00:53<00:45, 2.75it/s][A
|
1348 |
+
|
1349 |
57%|█████▋ | 165/288 [00:53<00:43, 2.83it/s][A
|
1350 |
+
|
1351 |
58%|█████▊ | 166/288 [00:53<00:42, 2.87it/s][A
|
1352 |
+
|
1353 |
58%|█████▊ | 167/288 [00:54<00:40, 2.99it/s][A
|
1354 |
+
|
1355 |
58%|█████▊ | 168/288 [00:54<00:40, 2.93it/s][A
|
1356 |
+
|
1357 |
59%|█████▊ | 169/288 [00:54<00:40, 2.94it/s][A
|
1358 |
+
|
1359 |
59%|█████▉ | 170/288 [00:55<00:45, 2.57it/s][A
|
1360 |
+
|
1361 |
59%|█████▉ | 171/288 [00:55<00:43, 2.68it/s][A
|
1362 |
+
|
1363 |
60%|█████▉ | 172/288 [00:56<00:41, 2.79it/s][A
|
1364 |
+
|
1365 |
60%|██████ | 173/288 [00:56<00:40, 2.83it/s][A
|
1366 |
+
|
1367 |
60%|██████ | 174/288 [00:56<00:39, 2.89it/s][A
|
1368 |
+
|
1369 |
61%|██████ | 175/288 [00:57<00:37, 3.01it/s][A
|
1370 |
+
|
1371 |
61%|██████ | 176/288 [00:57<00:51, 2.17it/s][A
|
1372 |
+
|
1373 |
61%|██████▏ | 177/288 [00:58<00:47, 2.36it/s][A
|
1374 |
+
|
1375 |
62%|██████▏ | 178/288 [00:58<00:43, 2.50it/s][A
|
1376 |
+
|
1377 |
62%|██████▏ | 179/288 [00:58<00:40, 2.67it/s][A
|
1378 |
+
|
1379 |
62%|██████▎ | 180/288 [00:59<00:39, 2.77it/s][A
|
1380 |
+
|
1381 |
63%|██████▎ | 181/288 [00:59<00:39, 2.69it/s][A
|
1382 |
+
|
1383 |
63%|██████▎ | 182/288 [00:59<00:39, 2.71it/s][A
|
1384 |
+
|
1385 |
64%|██████▎ | 183/288 [01:00<00:37, 2.82it/s][A
|
1386 |
+
|
1387 |
64%|██████▍ | 184/288 [01:00<00:36, 2.86it/s][A
|
1388 |
+
|
1389 |
64%|██████▍ | 185/288 [01:00<00:35, 2.92it/s][A
|
1390 |
+
|
1391 |
65%|██████▍ | 186/288 [01:01<00:38, 2.62it/s][A
|
1392 |
+
|
1393 |
65%|██████▍ | 187/288 [01:01<00:38, 2.63it/s][A
|
1394 |
+
|
1395 |
65%|██████▌ | 188/288 [01:02<00:36, 2.74it/s][A
|
1396 |
+
|
1397 |
66%|██████▌ | 189/288 [01:02<00:34, 2.90it/s][A
|
1398 |
+
|
1399 |
66%|██████▌ | 190/288 [01:02<00:34, 2.81it/s][A
|
1400 |
+
|
1401 |
66%|██████▋ | 191/288 [01:03<00:39, 2.43it/s][A
|
1402 |
+
|
1403 |
67%|██████▋ | 192/288 [01:03<00:36, 2.65it/s][A
|
1404 |
+
|
1405 |
67%|██████▋ | 193/288 [01:03<00:34, 2.76it/s][A
|
1406 |
+
|
1407 |
67%|██████▋ | 194/288 [01:04<00:34, 2.72it/s][A
|
1408 |
+
|
1409 |
68%|██████▊ | 195/288 [01:04<00:33, 2.80it/s][A
|
1410 |
+
|
1411 |
68%|██████▊ | 196/288 [01:05<00:39, 2.31it/s][A
|
1412 |
+
|
1413 |
68%|██████▊ | 197/288 [01:05<00:36, 2.47it/s][A
|
1414 |
+
|
1415 |
69%|██████▉ | 198/288 [01:05<00:33, 2.72it/s][A
|
1416 |
+
|
1417 |
69%|██████▉ | 199/288 [01:06<00:31, 2.82it/s][A
|
1418 |
+
|
1419 |
69%|██████▉ | 200/288 [01:06<00:29, 3.00it/s][A
|
1420 |
+
|
1421 |
70%|██████▉ | 201/288 [01:06<00:35, 2.46it/s][A
|
1422 |
+
|
1423 |
70%|███████ | 202/288 [01:07<00:32, 2.62it/s][A
|
1424 |
+
|
1425 |
70%|███████ | 203/288 [01:07<00:31, 2.73it/s][A
|
1426 |
+
|
1427 |
71%|███████ | 204/288 [01:07<00:29, 2.82it/s][A
|
1428 |
+
|
1429 |
71%|███████ | 205/288 [01:08<00:28, 2.95it/s][A
|
1430 |
+
|
1431 |
72%|███████▏ | 206/288 [01:08<00:33, 2.42it/s][A
|
1432 |
+
|
1433 |
72%|███████▏ | 207/288 [01:09<00:32, 2.50it/s][A
|
1434 |
+
|
1435 |
72%|███████▏ | 208/288 [01:09<00:31, 2.57it/s][A
|
1436 |
+
|
1437 |
73%|███████▎ | 209/288 [01:09<00:30, 2.61it/s][A
|
1438 |
+
|
1439 |
73%|███████▎ | 210/288 [01:10<00:27, 2.87it/s][A
|
1440 |
+
|
1441 |
73%|███████▎ | 211/288 [01:10<00:36, 2.14it/s][A
|
1442 |
+
|
1443 |
74%|███████▎ | 212/288 [01:11<00:32, 2.36it/s][A
|
1444 |
+
|
1445 |
74%|███████▍ | 213/288 [01:11<00:31, 2.38it/s][A
|
1446 |
+
|
1447 |
74%|███████▍ | 214/288 [01:12<00:29, 2.54it/s][A
|
1448 |
+
|
1449 |
75%|███████▍ | 215/288 [01:12<00:31, 2.30it/s][A
|
1450 |
+
|
1451 |
75%|███████▌ | 216/288 [01:12<00:29, 2.45it/s][A
|
1452 |
+
|
1453 |
75%|███████▌ | 217/288 [01:13<00:26, 2.67it/s][A
|
1454 |
+
|
1455 |
76%|███████▌ | 218/288 [01:13<00:25, 2.72it/s][A
|
1456 |
+
|
1457 |
76%|███████▌ | 219/288 [01:14<00:29, 2.32it/s][A
|
1458 |
+
|
1459 |
76%|███████▋ | 220/288 [01:14<00:28, 2.37it/s][A
|
1460 |
+
|
1461 |
77%|███████▋ | 221/288 [01:14<00:26, 2.49it/s][A
|
1462 |
+
|
1463 |
77%|███████▋ | 222/288 [01:15<00:26, 2.54it/s][A
|
1464 |
+
|
1465 |
77%|███████▋ | 223/288 [01:15<00:28, 2.30it/s][A
|
1466 |
+
|
1467 |
78%|███████▊ | 224/288 [01:16<00:26, 2.45it/s][A
|
1468 |
+
|
1469 |
78%|███████▊ | 225/288 [01:16<00:24, 2.61it/s][A
|
1470 |
+
|
1471 |
78%|███████▊ | 226/288 [01:16<00:22, 2.72it/s][A
|
1472 |
+
|
1473 |
79%|███████▉ | 227/288 [01:17<00:27, 2.25it/s][A
|
1474 |
+
|
1475 |
79%|███████▉ | 228/288 [01:17<00:24, 2.40it/s][A
|
1476 |
+
|
1477 |
80%|███████▉ | 229/288 [01:18<00:23, 2.54it/s][A
|
1478 |
+
|
1479 |
80%|███████▉ | 230/288 [01:18<00:21, 2.66it/s][A
|
1480 |
+
|
1481 |
80%|████��███ | 231/288 [01:19<00:25, 2.23it/s][A
|
1482 |
+
|
1483 |
81%|████████ | 232/288 [01:19<00:22, 2.44it/s][A
|
1484 |
+
|
1485 |
81%|████████ | 233/288 [01:19<00:21, 2.53it/s][A
|
1486 |
+
|
1487 |
81%|████████▏ | 234/288 [01:20<00:19, 2.71it/s][A
|
1488 |
+
|
1489 |
82%|████████▏ | 235/288 [01:20<00:25, 2.12it/s][A
|
1490 |
+
|
1491 |
82%|████████▏ | 236/288 [01:21<00:22, 2.28it/s][A
|
1492 |
+
|
1493 |
82%|████████▏ | 237/288 [01:21<00:21, 2.41it/s][A
|
1494 |
+
|
1495 |
83%|████████▎ | 238/288 [01:21<00:20, 2.50it/s][A
|
1496 |
+
|
1497 |
83%|████████▎ | 239/288 [01:22<00:24, 2.00it/s][A
|
1498 |
+
|
1499 |
83%|████████▎ | 240/288 [01:22<00:21, 2.27it/s][A
|
1500 |
+
|
1501 |
84%|████████▎ | 241/288 [01:23<00:19, 2.42it/s][A
|
1502 |
+
|
1503 |
84%|████████▍ | 242/288 [01:23<00:18, 2.54it/s][A
|
1504 |
+
|
1505 |
84%|████████▍ | 243/288 [01:24<00:21, 2.06it/s][A
|
1506 |
+
|
1507 |
85%|████████▍ | 244/288 [01:24<00:19, 2.24it/s][A
|
1508 |
+
|
1509 |
85%|████████▌ | 245/288 [01:25<00:17, 2.39it/s][A
|
1510 |
+
|
1511 |
85%|████████▌ | 246/288 [01:25<00:17, 2.45it/s][A
|
1512 |
+
|
1513 |
86%|████████▌ | 247/288 [01:26<00:20, 2.02it/s][A
|
1514 |
+
|
1515 |
86%|████████▌ | 248/288 [01:26<00:17, 2.25it/s][A
|
1516 |
+
|
1517 |
86%|████████▋ | 249/288 [01:26<00:16, 2.37it/s][A
|
1518 |
+
|
1519 |
87%|████████▋ | 250/288 [01:27<00:15, 2.45it/s][A
|
1520 |
+
|
1521 |
87%|████████▋ | 251/288 [01:27<00:19, 1.93it/s][A
|
1522 |
+
|
1523 |
88%|████████▊ | 252/288 [01:28<00:17, 2.10it/s][A
|
1524 |
+
|
1525 |
88%|████████▊ | 253/288 [01:28<00:14, 2.34it/s][A
|
1526 |
+
|
1527 |
88%|████████▊ | 254/288 [01:29<00:15, 2.19it/s][A
|
1528 |
+
|
1529 |
89%|████████▊ | 255/288 [01:29<00:13, 2.44it/s][A
|
1530 |
+
|
1531 |
89%|████████▉ | 256/288 [01:29<00:12, 2.56it/s][A
|
1532 |
+
|
1533 |
89%|████████▉ | 257/288 [01:30<00:14, 2.19it/s][A
|
1534 |
+
|
1535 |
90%|████████▉ | 258/288 [01:30<00:13, 2.30it/s][A
|
1536 |
+
|
1537 |
90%|████████▉ | 259/288 [01:31<00:12, 2.39it/s][A
|
1538 |
+
|
1539 |
90%|█████████ | 260/288 [01:31<00:13, 2.08it/s][A
|
1540 |
+
|
1541 |
91%|█████████ | 261/288 [01:32<00:11, 2.26it/s][A
|
1542 |
+
|
1543 |
91%|█████████ | 262/288 [01:32<00:10, 2.41it/s][A
|
1544 |
+
|
1545 |
91%|█████████▏| 263/288 [01:33<00:11, 2.10it/s][A
|
1546 |
+
|
1547 |
92%|█████████▏| 264/288 [01:33<00:10, 2.26it/s][A
|
1548 |
+
|
1549 |
92%|█████████▏| 265/288 [01:33<00:09, 2.39it/s][A
|
1550 |
+
|
1551 |
92%|█████████▏| 266/288 [01:34<00:10, 2.08it/s][A
|
1552 |
+
|
1553 |
93%|█████████▎| 267/288 [01:34<00:09, 2.20it/s][A
|
1554 |
+
|
1555 |
93%|█████████▎| 268/288 [01:35<00:08, 2.38it/s][A
|
1556 |
+
|
1557 |
93%|█████████▎| 269/288 [01:35<00:09, 2.00it/s][A
|
1558 |
+
|
1559 |
94%|█████████▍| 270/288 [01:36<00:08, 2.11it/s][A
|
1560 |
+
|
1561 |
94%|█████████▍| 271/288 [01:36<00:07, 2.28it/s][A
|
1562 |
+
|
1563 |
94%|█████████▍| 272/288 [01:37<00:08, 1.85it/s][A
|
1564 |
+
|
1565 |
95%|█████████▍| 273/288 [01:37<00:07, 2.08it/s][A
|
1566 |
+
|
1567 |
95%|█████████▌| 274/288 [01:38<00:06, 2.28it/s][A
|
1568 |
+
|
1569 |
95%|█████████▌| 275/288 [01:38<00:06, 1.89it/s][A
|
1570 |
+
|
1571 |
96%|█████████▌| 276/288 [01:39<00:05, 2.12it/s][A
|
1572 |
+
|
1573 |
96%|█████████▌| 277/288 [01:39<00:04, 2.29it/s][A
|
1574 |
+
|
1575 |
97%|█████████▋| 278/288 [01:40<00:05, 1.78it/s][A
|
1576 |
+
|
1577 |
97%|█████████▋| 279/288 [01:40<00:04, 2.05it/s][A
|
1578 |
+
|
1579 |
97%|█████████▋| 280/288 [01:41<00:03, 2.24it/s][A
|
1580 |
+
|
1581 |
98%|█████████▊| 281/288 [01:41<00:03, 1.83it/s][A
|
1582 |
+
|
1583 |
98%|█████████▊| 282/288 [01:42<00:02, 2.06it/s][A
|
1584 |
+
|
1585 |
98%|█████████▊| 283/288 [01:42<00:02, 2.17it/s][A
|
1586 |
+
|
1587 |
99%|█████████▊| 284/288 [01:43<00:02, 1.80it/s][A
|
1588 |
+
|
1589 |
99%|█████████▉| 285/288 [01:43<00:01, 2.05it/s][A
|
1590 |
+
|
1591 |
99%|█████████▉| 286/288 [01:44<00:00, 2.26it/s][A
|
1592 |
+
|
1593 |
+
|
1594 |
|
1595 |
+
|
1596 |
|
1597 |
1%|▏ | 500/37300 [15:13<14:56:05, 1.46s/it]
|
1598 |
+
|
1599 |
+
|
1600 |
[ASaving model checkpoint to ./checkpoint-500
|
1601 |
+
Configuration saved in ./checkpoint-500/config.json
|
1602 |
+
Model weights saved in ./checkpoint-500/pytorch_model.bin
|
1603 |
+
Configuration saved in ./checkpoint-500/preprocessor_config.json
|
1604 |
+
Configuration saved in ./preprocessor_config.json
|
preprocessor_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"padding_side": "right",
|
6 |
+
"padding_value": 0,
|
7 |
+
"return_attention_mask": true,
|
8 |
+
"sampling_rate": 16000
|
9 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:572879a364a49fa364fbb6c4c85b5ca6ca71adfa5d735fdd625948ca4a5d6f55
|
3 |
+
size 1276909233
|
run.sh
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python run_speech_recognition_ctc.py \
|
2 |
+
--dataset_name="common_voice" \
|
3 |
+
--model_name_or_path="facebook/wav2vec2-xls-r-300m" \
|
4 |
+
--dataset_config_name="zh-HK" \
|
5 |
+
--output_dir="./" \
|
6 |
+
--overwrite_output_dir \
|
7 |
+
--num_train_epochs="100" \
|
8 |
+
--per_device_train_batch_size="8" \
|
9 |
+
--per_device_eval_batch_size="8" \
|
10 |
+
--gradient_accumulation_steps="4" \
|
11 |
+
--learning_rate="1e-4" \
|
12 |
+
--warmup_steps="2000" \
|
13 |
+
--length_column_name="input_length" \
|
14 |
+
--max_duration_in_seconds="7" \
|
15 |
+
--max_eval_samples="3000" \
|
16 |
+
--evaluation_strategy="steps" \
|
17 |
+
--text_column_name="sentence" \
|
18 |
+
--chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – ! - : – 。 》 , ) , ? ; ~ ~ … ︰ , ( 」 ‧ 《 ﹔ 、 — / , 「 ﹖ · \
|
19 |
+
--save_steps="500" \
|
20 |
+
--eval_steps="500" \
|
21 |
+
--logging_steps="100" \
|
22 |
+
--layerdrop="0.0" \
|
23 |
+
--activation_dropout="0.1" \
|
24 |
+
--save_total_limit="3" \
|
25 |
+
--freeze_feature_encoder \
|
26 |
+
--feat_proj_dropout="0.0" \
|
27 |
+
--mask_time_prob="0.75" \
|
28 |
+
--mask_time_length="10" \
|
29 |
+
--mask_feature_prob="0.25" \
|
30 |
+
--mask_feature_length="64" \
|
31 |
+
--gradient_checkpointing \
|
32 |
+
--use_auth_token \
|
33 |
+
--fp16 \
|
34 |
+
--group_by_length \
|
35 |
+
--do_train --do_eval \
|
36 |
+
--report_to="tensorboard" \
|
37 |
+
--push_to_hub
|
run_speech_recognition_ctc.py
ADDED
@@ -0,0 +1,829 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
|
16 |
+
""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
|
17 |
+
|
18 |
+
import functools
|
19 |
+
import json
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import sys
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass, field
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
from datasets import DatasetDict, load_dataset, load_metric
|
32 |
+
|
33 |
+
import transformers
|
34 |
+
from transformers import (
|
35 |
+
AutoConfig,
|
36 |
+
AutoFeatureExtractor,
|
37 |
+
AutoModelForCTC,
|
38 |
+
AutoProcessor,
|
39 |
+
AutoTokenizer,
|
40 |
+
HfArgumentParser,
|
41 |
+
Trainer,
|
42 |
+
TrainingArguments,
|
43 |
+
Wav2Vec2Processor,
|
44 |
+
set_seed,
|
45 |
+
)
|
46 |
+
from transformers.trainer_utils import get_last_checkpoint, is_main_process
|
47 |
+
from transformers.utils import check_min_version
|
48 |
+
from transformers.utils.versions import require_version
|
49 |
+
|
50 |
+
|
51 |
+
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
52 |
+
check_min_version("4.17.0.dev0")
|
53 |
+
|
54 |
+
require_version(
|
55 |
+
"datasets>=1.13.3",
|
56 |
+
"To fix: pip install -r examples/pytorch/text-classification/requirements.txt",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
logger = logging.getLogger(__name__)
|
61 |
+
|
62 |
+
|
63 |
+
def list_field(default=None, metadata=None):
|
64 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
65 |
+
|
66 |
+
|
67 |
+
@dataclass
|
68 |
+
class ModelArguments:
|
69 |
+
"""
|
70 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
71 |
+
"""
|
72 |
+
|
73 |
+
model_name_or_path: str = field(
|
74 |
+
metadata={
|
75 |
+
"help": "Path to pretrained model or model identifier from huggingface.co/models"
|
76 |
+
}
|
77 |
+
)
|
78 |
+
tokenizer_name_or_path: Optional[str] = field(
|
79 |
+
default=None,
|
80 |
+
metadata={
|
81 |
+
"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"
|
82 |
+
},
|
83 |
+
)
|
84 |
+
cache_dir: Optional[str] = field(
|
85 |
+
default=None,
|
86 |
+
metadata={
|
87 |
+
"help": "Where do you want to store the pretrained models downloaded from huggingface.co"
|
88 |
+
},
|
89 |
+
)
|
90 |
+
freeze_feature_encoder: bool = field(
|
91 |
+
default=True,
|
92 |
+
metadata={"help": "Whether to freeze the feature encoder layers of the model."},
|
93 |
+
)
|
94 |
+
attention_dropout: float = field(
|
95 |
+
default=0.0,
|
96 |
+
metadata={"help": "The dropout ratio for the attention probabilities."},
|
97 |
+
)
|
98 |
+
activation_dropout: float = field(
|
99 |
+
default=0.0,
|
100 |
+
metadata={
|
101 |
+
"help": "The dropout ratio for activations inside the fully connected layer."
|
102 |
+
},
|
103 |
+
)
|
104 |
+
feat_proj_dropout: float = field(
|
105 |
+
default=0.0, metadata={"help": "The dropout ratio for the projected features."}
|
106 |
+
)
|
107 |
+
hidden_dropout: float = field(
|
108 |
+
default=0.0,
|
109 |
+
metadata={
|
110 |
+
"help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
|
111 |
+
},
|
112 |
+
)
|
113 |
+
final_dropout: float = field(
|
114 |
+
default=0.0,
|
115 |
+
metadata={"help": "The dropout probability for the final projection layer."},
|
116 |
+
)
|
117 |
+
mask_time_prob: float = field(
|
118 |
+
default=0.05,
|
119 |
+
metadata={
|
120 |
+
"help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
|
121 |
+
"span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
|
122 |
+
"vectors will be masked along the time axis."
|
123 |
+
},
|
124 |
+
)
|
125 |
+
mask_time_length: int = field(
|
126 |
+
default=10,
|
127 |
+
metadata={"help": "Length of vector span to mask along the time axis."},
|
128 |
+
)
|
129 |
+
mask_feature_prob: float = field(
|
130 |
+
default=0.0,
|
131 |
+
metadata={
|
132 |
+
"help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
|
133 |
+
"span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
|
134 |
+
},
|
135 |
+
)
|
136 |
+
mask_feature_length: int = field(
|
137 |
+
default=10,
|
138 |
+
metadata={"help": "Length of vector span to mask along the feature axis."},
|
139 |
+
)
|
140 |
+
layerdrop: float = field(
|
141 |
+
default=0.0, metadata={"help": "The LayerDrop probability."}
|
142 |
+
)
|
143 |
+
ctc_loss_reduction: Optional[str] = field(
|
144 |
+
default="mean",
|
145 |
+
metadata={
|
146 |
+
"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."
|
147 |
+
},
|
148 |
+
)
|
149 |
+
|
150 |
+
|
151 |
+
@dataclass
|
152 |
+
class DataTrainingArguments:
|
153 |
+
"""
|
154 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
155 |
+
|
156 |
+
Using `HfArgumentParser` we can turn this class
|
157 |
+
into argparse arguments to be able to specify them on
|
158 |
+
the command line.
|
159 |
+
"""
|
160 |
+
|
161 |
+
dataset_name: str = field(
|
162 |
+
metadata={
|
163 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
164 |
+
}
|
165 |
+
)
|
166 |
+
dataset_config_name: str = field(
|
167 |
+
default=None,
|
168 |
+
metadata={
|
169 |
+
"help": "The configuration name of the dataset to use (via the datasets library)."
|
170 |
+
},
|
171 |
+
)
|
172 |
+
train_split_name: str = field(
|
173 |
+
default="train+validation",
|
174 |
+
metadata={
|
175 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
|
176 |
+
},
|
177 |
+
)
|
178 |
+
eval_split_name: str = field(
|
179 |
+
default="test",
|
180 |
+
metadata={
|
181 |
+
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'test'"
|
182 |
+
},
|
183 |
+
)
|
184 |
+
audio_column_name: str = field(
|
185 |
+
default="audio",
|
186 |
+
metadata={
|
187 |
+
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"
|
188 |
+
},
|
189 |
+
)
|
190 |
+
text_column_name: str = field(
|
191 |
+
default="text",
|
192 |
+
metadata={
|
193 |
+
"help": "The name of the dataset column containing the text data. Defaults to 'text'"
|
194 |
+
},
|
195 |
+
)
|
196 |
+
overwrite_cache: bool = field(
|
197 |
+
default=False,
|
198 |
+
metadata={"help": "Overwrite the cached preprocessed datasets or not."},
|
199 |
+
)
|
200 |
+
preprocessing_num_workers: Optional[int] = field(
|
201 |
+
default=None,
|
202 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
203 |
+
)
|
204 |
+
max_train_samples: Optional[int] = field(
|
205 |
+
default=None,
|
206 |
+
metadata={
|
207 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
208 |
+
"value if set."
|
209 |
+
},
|
210 |
+
)
|
211 |
+
max_eval_samples: Optional[int] = field(
|
212 |
+
default=None,
|
213 |
+
metadata={
|
214 |
+
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
|
215 |
+
"value if set."
|
216 |
+
},
|
217 |
+
)
|
218 |
+
chars_to_ignore: Optional[List[str]] = list_field(
|
219 |
+
default=None,
|
220 |
+
metadata={"help": "A list of characters to remove from the transcripts."},
|
221 |
+
)
|
222 |
+
eval_metrics: List[str] = list_field(
|
223 |
+
default=["wer", "cer"],
|
224 |
+
metadata={
|
225 |
+
"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"
|
226 |
+
},
|
227 |
+
)
|
228 |
+
max_duration_in_seconds: float = field(
|
229 |
+
default=20.0,
|
230 |
+
metadata={
|
231 |
+
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
|
232 |
+
},
|
233 |
+
)
|
234 |
+
min_duration_in_seconds: float = field(
|
235 |
+
default=0.0,
|
236 |
+
metadata={
|
237 |
+
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"
|
238 |
+
},
|
239 |
+
)
|
240 |
+
preprocessing_only: bool = field(
|
241 |
+
default=False,
|
242 |
+
metadata={
|
243 |
+
"help": "Whether to only do data preprocessing and skip training. "
|
244 |
+
"This is especially useful when data preprocessing errors out in distributed training due to timeout. "
|
245 |
+
"In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
|
246 |
+
"so that the cached datasets can consequently be loaded in distributed training"
|
247 |
+
},
|
248 |
+
)
|
249 |
+
use_auth_token: bool = field(
|
250 |
+
default=False,
|
251 |
+
metadata={
|
252 |
+
"help": "If :obj:`True`, will use the token generated when running"
|
253 |
+
":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
|
254 |
+
},
|
255 |
+
)
|
256 |
+
unk_token: str = field(
|
257 |
+
default="[UNK]", metadata={"help": "The unk token for the tokenizer"},
|
258 |
+
)
|
259 |
+
pad_token: str = field(
|
260 |
+
default="[PAD]", metadata={"help": "The padding token for the tokenizer"},
|
261 |
+
)
|
262 |
+
word_delimiter_token: str = field(
|
263 |
+
default="|", metadata={"help": "The word delimiter token for the tokenizer"},
|
264 |
+
)
|
265 |
+
phoneme_language: Optional[str] = field(
|
266 |
+
default=None,
|
267 |
+
metadata={
|
268 |
+
"help": "The target language that should be used be"
|
269 |
+
" passed to the tokenizer for tokenization. Note that"
|
270 |
+
" this is only relevant if the model classifies the"
|
271 |
+
" input audio to a sequence of phoneme sequences."
|
272 |
+
},
|
273 |
+
)
|
274 |
+
|
275 |
+
|
276 |
+
@dataclass
|
277 |
+
class DataCollatorCTCWithPadding:
|
278 |
+
"""
|
279 |
+
Data collator that will dynamically pad the inputs received.
|
280 |
+
Args:
|
281 |
+
processor (:class:`~transformers.AutoProcessor`)
|
282 |
+
The processor used for proccessing the data.
|
283 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
284 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
285 |
+
among:
|
286 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
287 |
+
sequence if provided).
|
288 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
289 |
+
maximum acceptable input length for the model if that argument is not provided.
|
290 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
291 |
+
different lengths).
|
292 |
+
max_length (:obj:`int`, `optional`):
|
293 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
294 |
+
max_length_labels (:obj:`int`, `optional`):
|
295 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
296 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
297 |
+
If set will pad the sequence to a multiple of the provided value.
|
298 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
299 |
+
7.5 (Volta).
|
300 |
+
"""
|
301 |
+
|
302 |
+
processor: AutoProcessor
|
303 |
+
padding: Union[bool, str] = "longest"
|
304 |
+
pad_to_multiple_of: Optional[int] = None
|
305 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
306 |
+
|
307 |
+
def __call__(
|
308 |
+
self, features: List[Dict[str, Union[List[int], torch.Tensor]]]
|
309 |
+
) -> Dict[str, torch.Tensor]:
|
310 |
+
# split inputs and labels since they have to be of different lenghts and need
|
311 |
+
# different padding methods
|
312 |
+
input_features = [
|
313 |
+
{"input_values": feature["input_values"]} for feature in features
|
314 |
+
]
|
315 |
+
label_features = [{"input_ids": feature["labels"]} for feature in features]
|
316 |
+
|
317 |
+
batch = self.processor.pad(
|
318 |
+
input_features,
|
319 |
+
padding=self.padding,
|
320 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
321 |
+
return_tensors="pt",
|
322 |
+
)
|
323 |
+
|
324 |
+
with self.processor.as_target_processor():
|
325 |
+
labels_batch = self.processor.pad(
|
326 |
+
label_features,
|
327 |
+
padding=self.padding,
|
328 |
+
pad_to_multiple_of=self.pad_to_multiple_of_labels,
|
329 |
+
return_tensors="pt",
|
330 |
+
)
|
331 |
+
|
332 |
+
# replace padding with -100 to ignore loss correctly
|
333 |
+
labels = labels_batch["input_ids"].masked_fill(
|
334 |
+
labels_batch.attention_mask.ne(1), -100
|
335 |
+
)
|
336 |
+
|
337 |
+
batch["labels"] = labels
|
338 |
+
|
339 |
+
return batch
|
340 |
+
|
341 |
+
|
342 |
+
def create_vocabulary_from_data(
|
343 |
+
datasets: DatasetDict,
|
344 |
+
word_delimiter_token: Optional[str] = None,
|
345 |
+
unk_token: Optional[str] = None,
|
346 |
+
pad_token: Optional[str] = None,
|
347 |
+
):
|
348 |
+
# Given training and test labels create vocabulary
|
349 |
+
def extract_all_chars(batch):
|
350 |
+
all_text = " ".join(batch["target_text"])
|
351 |
+
vocab = list(set(all_text))
|
352 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
353 |
+
|
354 |
+
vocabs = datasets.map(
|
355 |
+
extract_all_chars,
|
356 |
+
batched=True,
|
357 |
+
batch_size=-1,
|
358 |
+
keep_in_memory=True,
|
359 |
+
remove_columns=datasets["train"].column_names,
|
360 |
+
)
|
361 |
+
|
362 |
+
# take union of all unique characters in each dataset
|
363 |
+
vocab_set = functools.reduce(
|
364 |
+
lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]),
|
365 |
+
vocabs.values(),
|
366 |
+
)
|
367 |
+
|
368 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
|
369 |
+
|
370 |
+
# replace white space with delimiter token
|
371 |
+
if word_delimiter_token is not None:
|
372 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
373 |
+
del vocab_dict[" "]
|
374 |
+
|
375 |
+
# add unk and pad token
|
376 |
+
if unk_token is not None:
|
377 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
378 |
+
|
379 |
+
if pad_token is not None:
|
380 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
381 |
+
|
382 |
+
return vocab_dict
|
383 |
+
|
384 |
+
|
385 |
+
def main():
|
386 |
+
# See all possible arguments in src/transformers/training_args.py
|
387 |
+
# or by passing the --help flag to this script.
|
388 |
+
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
389 |
+
|
390 |
+
parser = HfArgumentParser(
|
391 |
+
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
392 |
+
)
|
393 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
394 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
395 |
+
# let's parse it to get our arguments.
|
396 |
+
model_args, data_args, training_args = parser.parse_json_file(
|
397 |
+
json_file=os.path.abspath(sys.argv[1])
|
398 |
+
)
|
399 |
+
else:
|
400 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
401 |
+
|
402 |
+
# Detecting last checkpoint.
|
403 |
+
last_checkpoint = None
|
404 |
+
if (
|
405 |
+
os.path.isdir(training_args.output_dir)
|
406 |
+
and training_args.do_train
|
407 |
+
and not training_args.overwrite_output_dir
|
408 |
+
):
|
409 |
+
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
410 |
+
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
411 |
+
raise ValueError(
|
412 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
413 |
+
"Use --overwrite_output_dir to overcome."
|
414 |
+
)
|
415 |
+
elif last_checkpoint is not None:
|
416 |
+
logger.info(
|
417 |
+
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
418 |
+
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
419 |
+
)
|
420 |
+
|
421 |
+
# Setup logging
|
422 |
+
logging.basicConfig(
|
423 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
424 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
425 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
426 |
+
)
|
427 |
+
logger.setLevel(
|
428 |
+
logging.INFO if is_main_process(training_args.local_rank) else logging.WARN
|
429 |
+
)
|
430 |
+
|
431 |
+
# Log on each process the small summary:
|
432 |
+
logger.warning(
|
433 |
+
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
434 |
+
f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
435 |
+
)
|
436 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
437 |
+
if is_main_process(training_args.local_rank):
|
438 |
+
transformers.utils.logging.set_verbosity_info()
|
439 |
+
logger.info("Training/evaluation parameters %s", training_args)
|
440 |
+
|
441 |
+
# Set seed before initializing model.
|
442 |
+
set_seed(training_args.seed)
|
443 |
+
|
444 |
+
# 1. First, let's load the dataset
|
445 |
+
raw_datasets = DatasetDict()
|
446 |
+
|
447 |
+
if training_args.do_train:
|
448 |
+
raw_datasets["train"] = load_dataset(
|
449 |
+
data_args.dataset_name,
|
450 |
+
data_args.dataset_config_name,
|
451 |
+
split=data_args.train_split_name,
|
452 |
+
use_auth_token=data_args.use_auth_token,
|
453 |
+
)
|
454 |
+
|
455 |
+
if data_args.audio_column_name not in raw_datasets["train"].column_names:
|
456 |
+
raise ValueError(
|
457 |
+
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
|
458 |
+
"Make sure to set `--audio_column_name` to the correct audio column - one of "
|
459 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
460 |
+
)
|
461 |
+
|
462 |
+
if data_args.text_column_name not in raw_datasets["train"].column_names:
|
463 |
+
raise ValueError(
|
464 |
+
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
|
465 |
+
"Make sure to set `--text_column_name` to the correct text column - one of "
|
466 |
+
f"{', '.join(raw_datasets['train'].column_names)}."
|
467 |
+
)
|
468 |
+
|
469 |
+
if data_args.max_train_samples is not None:
|
470 |
+
raw_datasets["train"] = raw_datasets["train"].select(
|
471 |
+
range(data_args.max_train_samples)
|
472 |
+
)
|
473 |
+
|
474 |
+
if training_args.do_eval:
|
475 |
+
raw_datasets["eval"] = load_dataset(
|
476 |
+
data_args.dataset_name,
|
477 |
+
data_args.dataset_config_name,
|
478 |
+
split=data_args.eval_split_name,
|
479 |
+
use_auth_token=data_args.use_auth_token,
|
480 |
+
)
|
481 |
+
|
482 |
+
if data_args.max_eval_samples is not None:
|
483 |
+
raw_datasets["eval"] = raw_datasets["eval"].select(
|
484 |
+
range(data_args.max_eval_samples)
|
485 |
+
)
|
486 |
+
|
487 |
+
# 2. We remove some special characters from the datasets
|
488 |
+
# that make training complicated and do not help in transcribing the speech
|
489 |
+
# E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
|
490 |
+
# that could be easily picked up by the model
|
491 |
+
chars_to_ignore_regex = (
|
492 |
+
f'[{"".join(data_args.chars_to_ignore)}]'
|
493 |
+
if data_args.chars_to_ignore is not None
|
494 |
+
else None
|
495 |
+
)
|
496 |
+
text_column_name = data_args.text_column_name
|
497 |
+
|
498 |
+
def remove_special_characters(batch):
|
499 |
+
if chars_to_ignore_regex is not None:
|
500 |
+
batch["target_text"] = (
|
501 |
+
re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
batch["target_text"] = batch[text_column_name].lower() + " "
|
505 |
+
return batch
|
506 |
+
|
507 |
+
with training_args.main_process_first(
|
508 |
+
desc="dataset map special characters removal"
|
509 |
+
):
|
510 |
+
raw_datasets = raw_datasets.map(
|
511 |
+
remove_special_characters,
|
512 |
+
remove_columns=[text_column_name],
|
513 |
+
desc="remove special characters from datasets",
|
514 |
+
)
|
515 |
+
|
516 |
+
# save special tokens for tokenizer
|
517 |
+
word_delimiter_token = data_args.word_delimiter_token
|
518 |
+
unk_token = data_args.unk_token
|
519 |
+
pad_token = data_args.pad_token
|
520 |
+
|
521 |
+
# 3. Next, let's load the config as we might need it to create
|
522 |
+
# the tokenizer
|
523 |
+
# load config
|
524 |
+
config = AutoConfig.from_pretrained(
|
525 |
+
model_args.model_name_or_path,
|
526 |
+
cache_dir=model_args.cache_dir,
|
527 |
+
use_auth_token=data_args.use_auth_token,
|
528 |
+
)
|
529 |
+
|
530 |
+
# 4. Next, if no tokenizer file is defined,
|
531 |
+
# we create the vocabulary of the model by extracting all unique characters from
|
532 |
+
# the training and evaluation datasets
|
533 |
+
# We need to make sure that only first rank saves vocabulary
|
534 |
+
# make sure all processes wait until vocab is created
|
535 |
+
tokenizer_name_or_path = model_args.tokenizer_name_or_path
|
536 |
+
tokenizer_kwargs = {}
|
537 |
+
if tokenizer_name_or_path is None:
|
538 |
+
# save vocab in training output dir
|
539 |
+
tokenizer_name_or_path = training_args.output_dir
|
540 |
+
|
541 |
+
vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
|
542 |
+
|
543 |
+
with training_args.main_process_first():
|
544 |
+
if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
|
545 |
+
os.remove(vocab_file)
|
546 |
+
|
547 |
+
with training_args.main_process_first(desc="dataset map vocabulary creation"):
|
548 |
+
if not os.path.isfile(vocab_file):
|
549 |
+
os.makedirs(tokenizer_name_or_path, exist_ok=True)
|
550 |
+
vocab_dict = create_vocabulary_from_data(
|
551 |
+
raw_datasets,
|
552 |
+
word_delimiter_token=word_delimiter_token,
|
553 |
+
unk_token=unk_token,
|
554 |
+
pad_token=pad_token,
|
555 |
+
)
|
556 |
+
|
557 |
+
# save vocab dict to be loaded into tokenizer
|
558 |
+
with open(vocab_file, "w") as file:
|
559 |
+
json.dump(vocab_dict, file)
|
560 |
+
|
561 |
+
# if tokenizer has just been created
|
562 |
+
# it is defined by `tokenizer_class` if present in config else by `model_type`
|
563 |
+
tokenizer_kwargs = {
|
564 |
+
"config": config if config.tokenizer_class is not None else None,
|
565 |
+
"tokenizer_type": config.model_type
|
566 |
+
if config.tokenizer_class is None
|
567 |
+
else None,
|
568 |
+
"unk_token": unk_token,
|
569 |
+
"pad_token": pad_token,
|
570 |
+
"word_delimiter_token": word_delimiter_token,
|
571 |
+
}
|
572 |
+
|
573 |
+
# 5. Now we can instantiate the feature extractor, tokenizer and model
|
574 |
+
# Note for distributed training, the .from_pretrained methods guarantee that only
|
575 |
+
# one local process can concurrently download model & vocab.
|
576 |
+
|
577 |
+
# load feature_extractor and tokenizer
|
578 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
579 |
+
tokenizer_name_or_path,
|
580 |
+
use_auth_token=data_args.use_auth_token,
|
581 |
+
**tokenizer_kwargs,
|
582 |
+
)
|
583 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
584 |
+
model_args.model_name_or_path,
|
585 |
+
cache_dir=model_args.cache_dir,
|
586 |
+
use_auth_token=data_args.use_auth_token,
|
587 |
+
)
|
588 |
+
|
589 |
+
# adapt config
|
590 |
+
config.update(
|
591 |
+
{
|
592 |
+
"feat_proj_dropout": model_args.feat_proj_dropout,
|
593 |
+
"attention_dropout": model_args.attention_dropout,
|
594 |
+
"hidden_dropout": model_args.hidden_dropout,
|
595 |
+
"final_dropout": model_args.final_dropout,
|
596 |
+
"mask_time_prob": model_args.mask_time_prob,
|
597 |
+
"mask_time_length": model_args.mask_time_length,
|
598 |
+
"mask_feature_prob": model_args.mask_feature_prob,
|
599 |
+
"mask_feature_length": model_args.mask_feature_length,
|
600 |
+
"gradient_checkpointing": training_args.gradient_checkpointing,
|
601 |
+
"layerdrop": model_args.layerdrop,
|
602 |
+
"ctc_loss_reduction": model_args.ctc_loss_reduction,
|
603 |
+
"pad_token_id": tokenizer.pad_token_id,
|
604 |
+
"vocab_size": len(tokenizer),
|
605 |
+
"activation_dropout": model_args.activation_dropout,
|
606 |
+
}
|
607 |
+
)
|
608 |
+
|
609 |
+
# create model
|
610 |
+
model = AutoModelForCTC.from_pretrained(
|
611 |
+
model_args.model_name_or_path,
|
612 |
+
cache_dir=model_args.cache_dir,
|
613 |
+
config=config,
|
614 |
+
use_auth_token=data_args.use_auth_token,
|
615 |
+
)
|
616 |
+
|
617 |
+
# freeze encoder
|
618 |
+
if model_args.freeze_feature_encoder:
|
619 |
+
model.freeze_feature_encoder()
|
620 |
+
|
621 |
+
# 6. Now we preprocess the datasets including loading the audio, resampling and normalization
|
622 |
+
# Thankfully, `datasets` takes care of automatically loading and resampling the audio,
|
623 |
+
# so that we just need to set the correct target sampling rate and normalize the input
|
624 |
+
# via the `feature_extractor`
|
625 |
+
|
626 |
+
# make sure that dataset decodes audio with correct sampling rate
|
627 |
+
dataset_sampling_rate = (
|
628 |
+
next(iter(raw_datasets.values()))
|
629 |
+
.features[data_args.audio_column_name]
|
630 |
+
.sampling_rate
|
631 |
+
)
|
632 |
+
if dataset_sampling_rate != feature_extractor.sampling_rate:
|
633 |
+
raw_datasets = raw_datasets.cast_column(
|
634 |
+
data_args.audio_column_name,
|
635 |
+
datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate),
|
636 |
+
)
|
637 |
+
|
638 |
+
# derive max & min input length for sample rate & max duration
|
639 |
+
max_input_length = (
|
640 |
+
data_args.max_duration_in_seconds * feature_extractor.sampling_rate
|
641 |
+
)
|
642 |
+
min_input_length = (
|
643 |
+
data_args.min_duration_in_seconds * feature_extractor.sampling_rate
|
644 |
+
)
|
645 |
+
audio_column_name = data_args.audio_column_name
|
646 |
+
num_workers = data_args.preprocessing_num_workers
|
647 |
+
|
648 |
+
# `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
|
649 |
+
phoneme_language = data_args.phoneme_language
|
650 |
+
|
651 |
+
# Preprocessing the datasets.
|
652 |
+
# We need to read the audio files as arrays and tokenize the targets.
|
653 |
+
def prepare_dataset(batch):
|
654 |
+
# load audio
|
655 |
+
sample = batch[audio_column_name]
|
656 |
+
|
657 |
+
inputs = feature_extractor(
|
658 |
+
sample["array"], sampling_rate=sample["sampling_rate"]
|
659 |
+
)
|
660 |
+
batch["input_values"] = inputs.input_values[0]
|
661 |
+
batch["input_length"] = len(batch["input_values"])
|
662 |
+
|
663 |
+
# encode targets
|
664 |
+
additional_kwargs = {}
|
665 |
+
if phoneme_language is not None:
|
666 |
+
additional_kwargs["phonemizer_lang"] = phoneme_language
|
667 |
+
|
668 |
+
batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
|
669 |
+
return batch
|
670 |
+
|
671 |
+
with training_args.main_process_first(desc="dataset map preprocessing"):
|
672 |
+
vectorized_datasets = raw_datasets.map(
|
673 |
+
prepare_dataset,
|
674 |
+
remove_columns=next(iter(raw_datasets.values())).column_names,
|
675 |
+
num_proc=num_workers,
|
676 |
+
desc="preprocess datasets",
|
677 |
+
)
|
678 |
+
|
679 |
+
def is_audio_in_length_range(length):
|
680 |
+
return length > min_input_length and length < max_input_length
|
681 |
+
|
682 |
+
# filter data that is shorter than min_input_length
|
683 |
+
vectorized_datasets = vectorized_datasets.filter(
|
684 |
+
is_audio_in_length_range,
|
685 |
+
num_proc=num_workers,
|
686 |
+
input_columns=["input_length"],
|
687 |
+
)
|
688 |
+
|
689 |
+
# 7. Next, we can prepare the training.
|
690 |
+
# Let's use word error rate (WER) as our evaluation metric,
|
691 |
+
# instantiate a data collator and the trainer
|
692 |
+
|
693 |
+
# Define evaluation metrics during training, *i.e.* word error rate, character error rate
|
694 |
+
eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
|
695 |
+
|
696 |
+
# for large datasets it is advised to run the preprocessing on a
|
697 |
+
# single machine first with ``args.preprocessing_only`` since there will mostly likely
|
698 |
+
# be a timeout when running the script in distributed mode.
|
699 |
+
# In a second step ``args.preprocessing_only`` can then be set to `False` to load the
|
700 |
+
# cached dataset
|
701 |
+
if data_args.preprocessing_only:
|
702 |
+
logger.info(
|
703 |
+
f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}"
|
704 |
+
)
|
705 |
+
return
|
706 |
+
|
707 |
+
def compute_metrics(pred):
|
708 |
+
pred_logits = pred.predictions
|
709 |
+
pred_ids = np.argmax(pred_logits, axis=-1)
|
710 |
+
|
711 |
+
pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
|
712 |
+
|
713 |
+
pred_str = tokenizer.batch_decode(pred_ids)
|
714 |
+
# we do not want to group tokens when computing the metrics
|
715 |
+
label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
|
716 |
+
|
717 |
+
metrics = {
|
718 |
+
k: v.compute(predictions=pred_str, references=label_str)
|
719 |
+
for k, v in eval_metrics.items()
|
720 |
+
}
|
721 |
+
|
722 |
+
return metrics
|
723 |
+
|
724 |
+
# Now save everything to be able to create a single processor later
|
725 |
+
if is_main_process(training_args.local_rank):
|
726 |
+
# save feature extractor, tokenizer and config
|
727 |
+
feature_extractor.save_pretrained(training_args.output_dir)
|
728 |
+
tokenizer.save_pretrained(training_args.output_dir)
|
729 |
+
config.save_pretrained(training_args.output_dir)
|
730 |
+
|
731 |
+
try:
|
732 |
+
processor = AutoProcessor.from_pretrained(training_args.output_dir)
|
733 |
+
except (OSError, KeyError):
|
734 |
+
warnings.warn(
|
735 |
+
"Loading a processor from a feature extractor config that does not"
|
736 |
+
" include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
|
737 |
+
" attribute to your `preprocessor_config.json` file to suppress this warning: "
|
738 |
+
" `'processor_class': 'Wav2Vec2Processor'`",
|
739 |
+
FutureWarning,
|
740 |
+
)
|
741 |
+
processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
|
742 |
+
|
743 |
+
# Instantiate custom data collator
|
744 |
+
data_collator = DataCollatorCTCWithPadding(processor=processor)
|
745 |
+
|
746 |
+
# Initialize Trainer
|
747 |
+
trainer = Trainer(
|
748 |
+
model=model,
|
749 |
+
data_collator=data_collator,
|
750 |
+
args=training_args,
|
751 |
+
compute_metrics=compute_metrics,
|
752 |
+
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
|
753 |
+
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
|
754 |
+
tokenizer=feature_extractor,
|
755 |
+
)
|
756 |
+
|
757 |
+
# 8. Finally, we can start training
|
758 |
+
|
759 |
+
# Training
|
760 |
+
if training_args.do_train:
|
761 |
+
|
762 |
+
# use last checkpoint if exist
|
763 |
+
if last_checkpoint is not None:
|
764 |
+
checkpoint = last_checkpoint
|
765 |
+
elif os.path.isdir(model_args.model_name_or_path):
|
766 |
+
checkpoint = model_args.model_name_or_path
|
767 |
+
else:
|
768 |
+
checkpoint = None
|
769 |
+
|
770 |
+
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
771 |
+
trainer.save_model()
|
772 |
+
|
773 |
+
metrics = train_result.metrics
|
774 |
+
max_train_samples = (
|
775 |
+
data_args.max_train_samples
|
776 |
+
if data_args.max_train_samples is not None
|
777 |
+
else len(vectorized_datasets["train"])
|
778 |
+
)
|
779 |
+
metrics["train_samples"] = min(
|
780 |
+
max_train_samples, len(vectorized_datasets["train"])
|
781 |
+
)
|
782 |
+
|
783 |
+
trainer.log_metrics("train", metrics)
|
784 |
+
trainer.save_metrics("train", metrics)
|
785 |
+
trainer.save_state()
|
786 |
+
|
787 |
+
# Evaluation
|
788 |
+
results = {}
|
789 |
+
if training_args.do_eval:
|
790 |
+
logger.info("*** Evaluate ***")
|
791 |
+
metrics = trainer.evaluate()
|
792 |
+
max_eval_samples = (
|
793 |
+
data_args.max_eval_samples
|
794 |
+
if data_args.max_eval_samples is not None
|
795 |
+
else len(vectorized_datasets["eval"])
|
796 |
+
)
|
797 |
+
metrics["eval_samples"] = min(
|
798 |
+
max_eval_samples, len(vectorized_datasets["eval"])
|
799 |
+
)
|
800 |
+
|
801 |
+
trainer.log_metrics("eval", metrics)
|
802 |
+
trainer.save_metrics("eval", metrics)
|
803 |
+
|
804 |
+
# Write model card and (optionally) push to hub
|
805 |
+
config_name = (
|
806 |
+
data_args.dataset_config_name
|
807 |
+
if data_args.dataset_config_name is not None
|
808 |
+
else "na"
|
809 |
+
)
|
810 |
+
kwargs = {
|
811 |
+
"finetuned_from": model_args.model_name_or_path,
|
812 |
+
"tasks": "speech-recognition",
|
813 |
+
"tags": ["automatic-speech-recognition", data_args.dataset_name],
|
814 |
+
"dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
|
815 |
+
"dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
|
816 |
+
}
|
817 |
+
if "common_voice" in data_args.dataset_name:
|
818 |
+
kwargs["language"] = config_name
|
819 |
+
|
820 |
+
if training_args.push_to_hub:
|
821 |
+
trainer.push_to_hub(**kwargs)
|
822 |
+
else:
|
823 |
+
trainer.create_model_card(**kwargs)
|
824 |
+
|
825 |
+
return results
|
826 |
+
|
827 |
+
|
828 |
+
if __name__ == "__main__":
|
829 |
+
main()
|
runs/Feb06_16-31-57_job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c/1644165171.7227242/events.out.tfevents.1644165171.job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c98151adf5ee89a0d86283e74254aa6f1e4356e6d7ca722e0529d9870e9c55e6
|
3 |
+
size 4564
|
runs/Feb06_16-31-57_job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c/events.out.tfevents.1644165171.job-cb7cc850-8327-4ab0-bdf4-0ebe63e2788c
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9d4a1bc2c2de2a345205696c1d43038bf6abda4645555b39a2341e729306471
|
3 |
+
size 5468
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:472e2ebcb99d59b6b693f009ff1df20cb7c55629d4fab148f61d3dc117b7c960
|
3 |
+
size 2991
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"a": 1, "b": 2, "c": 3, "d": 4, "f": 5, "g": 6, "h": 7, "i": 8, "j": 9, "l": 10, "m": 11, "n": 12, "p": 13, "q": 14, "r": 15, "s": 16, "t": 17, "u": 18, "v": 19, "w": 20, "x": 21, "y": 22, "~": 23, "⋯": 24, "⠀": 25, "⻣": 26, "ㄧ": 27, "㗎": 28, "㩒": 29, "㩿": 30, "㪐": 31, "䒏": 32, "䒐": 33, "䰧": 34, "一": 35, "丁": 36, "七": 37, "丈": 38, "三": 39, "上": 40, "下": 41, "不": 42, "丑": 43, "且": 44, "丕": 45, "世": 46, "丘": 47, "丙": 48, "丟": 49, "両": 50, "並": 51, "丫": 52, "中": 53, "丰": 54, "串": 55, "丶": 56, "丸": 57, "丹": 58, "主": 59, "丼": 60, "乃": 61, "久": 62, "义": 63, "之": 64, "乍": 65, "乎": 66, "乏": 67, "乒": 68, "乓": 69, "乖": 70, "乘": 71, "乙": 72, "乜": 73, "九": 74, "乞": 75, "也": 76, "乳": 77, "乸": 78, "乾": 79, "亂": 80, "了": 81, "予": 82, "事": 83, "二": 84, "于": 85, "互": 86, "五": 87, "井": 88, "些": 89, "亞": 90, "亡": 91, "亢": 92, "交": 93, "亦": 94, "亨": 95, "享": 96, "京": 97, "亭": 98, "亮": 99, "人": 100, "什": 101, "仁": 102, "仆": 103, "仇": 104, "今": 105, "介": 106, "仍": 107, "仔": 108, "仕": 109, "他": 110, "仗": 111, "付": 112, "仙": 113, "仞": 114, "代": 115, "令": 116, "以": 117, "仰": 118, "仲": 119, "件": 120, "任": 121, "份": 122, "仿": 123, "企": 124, "伊": 125, "伏": 126, "伐": 127, "休": 128, "伙": 129, "伯": 130, "估": 131, "伴": 132, "伶": 133, "伸": 134, "似": 135, "伽": 136, "佃": 137, "但": 138, "佈": 139, "位": 140, "低": 141, "住": 142, "佐": 143, "佑": 144, "佔": 145, "何": 146, "佗": 147, "余": 148, "佚": 149, "佛": 150, "作": 151, "你": 152, "佢": 153, "佣": 154, "佩": 155, "佬": 156, "佳": 157, "併": 158, "佻": 159, "使": 160, "侄": 161, "來": 162, "例": 163, "侍": 164, "供": 165, "依": 166, "侮": 167, "侯": 168, "侵": 169, "侶": 170, "便": 171, "係": 172, "促": 173, "俄": 174, "俊": 175, "俎": 176, "俏": 177, "俐": 178, "俗": 179, "俚": 180, "保": 181, "俠": 182, "信": 183, "俬": 184, "修": 185, "俸": 186, "俾": 187, "倉": 188, "個": 189, "倍": 190, "們": 191, "倒": 192, "候": 193, "倚": 194, "借": 195, "倦": 196, "倫": 197, "值": 198, "假": 199, "偈": 200, "偉": 201, "偏": 202, "偕": 203, "做": 204, "停": 205, "健": 206, "側": 207, "偶": 208, "偷": 209, "偽": 210, "傅": 211, "傍": 212, "傑": 213, "傘": 214, "備": 215, "傢": 216, "催": 217, "傭": 218, "傲": 219, "傳": 220, "債": 221, "傷": 222, "傻": 223, "傾": 224, "僅": 225, "像": 226, "僑": 227, "僕": 228, "僭": 229, "僱": 230, "價": 231, "僻": 232, "儀": 233, "億": 234, "儈": 235, "儍": 236, "儒": 237, "儘": 238, "優": 239, "儲": 240, "允": 241, "元": 242, "兄": 243, "充": 244, "兆": 245, "兇": 246, "先": 247, "光": 248, "克": 249, "兌": 250, "免": 251, "兒": 252, "兔": 253, "兜": 254, "入": 255, "內": 256, "全": 257, "兩": 258, "八": 259, "公": 260, "六": 261, "兮": 262, "共": 263, "兵": 264, "其": 265, "具": 266, "典": 267, "兼": 268, "内": 269, "冇": 270, "冊": 271, "再": 272, "冒": 273, "冕": 274, "冗": 275, "冚": 276, "冠": 277, "冤": 278, "冧": 279, "冬": 280, "冰": 281, "冷": 282, "准": 283, "凈": 284, "凌": 285, "凍": 286, "凝": 287, "凡": 288, "凰": 289, "凱": 290, "凳": 291, "凶": 292, "凹": 293, "出": 294, "函": 295, "刀": 296, "刁": 297, "刃": 298, "分": 299, "切": 300, "刑": 301, "划": 302, "列": 303, "初": 304, "判": 305, "別": 306, "刨": 307, "利": 308, "刮": 309, "到": 310, "制": 311, "刷": 312, "券": 313, "刺": 314, "刻": 315, "則": 316, "前": 317, "剎": 318, "剔": 319, "剛": 320, "剝": 321, "剩": 322, "剪": 323, "副": 324, "割": 325, "創": 326, "剷": 327, "劃": 328, "劇": 329, "劉": 330, "劊": 331, "劍": 332, "劑": 333, "劖": 334, "力": 335, "功": 336, "加": 337, "劣": 338, "助": 339, "努": 340, "勁": 341, "勃": 342, "勇": 343, "勉": 344, "勒": 345, "動": 346, "勘": 347, "務": 348, "勝": 349, "勞": 350, "勢": 351, "勤": 352, "勳": 353, "勵": 354, "勸": 355, "勻": 356, "勾": 357, "勿": 358, "包": 359, "匈": 360, "化": 361, "北": 362, "匙": 363, "匡": 364, "匯": 365, "匹": 366, "匿": 367, "區": 368, "十": 369, "千": 370, "升": 371, "午": 372, "半": 373, "卑": 374, "卒": 375, "卓": 376, "協": 377, "南": 378, "博": 379, "卜": 380, "卡": 381, "卦": 382, "卧": 383, "印": 384, "危": 385, "即": 386, "卵": 387, "卷": 388, "卸": 389, "卻": 390, "卿": 391, "厄": 392, "厘": 393, "厚": 394, "原": 395, "厥": 396, "厭": 397, "厲": 398, "厴": 399, "去": 400, "參": 401, "又": 402, "叉": 403, "及": 404, "友": 405, "反": 406, "叔": 407, "取": 408, "受": 409, "叛": 410, "叢": 411, "口": 412, "古": 413, "句": 414, "另": 415, "叨": 416, "只": 417, "叫": 418, "召": 419, "叭": 420, "叮": 421, "可": 422, "台": 423, "史": 424, "右": 425, "司": 426, "叻": 427, "吃": 428, "各": 429, "合": 430, "吉": 431, "吊": 432, "吋": 433, "同": 434, "名": 435, "后": 436, "吐": 437, "向": 438, "���": 439, "吖": 440, "君": 441, "吝": 442, "吞": 443, "吟": 444, "吠": 445, "否": 446, "吧": 447, "吩": 448, "含": 449, "吱": 450, "吳": 451, "吵": 452, "吶": 453, "吸": 454, "吹": 455, "吻": 456, "吼": 457, "吽": 458, "吾": 459, "呀": 460, "呂": 461, "呃": 462, "呆": 463, "呈": 464, "告": 465, "呎": 466, "呔": 467, "呢": 468, "周": 469, "呱": 470, "味": 471, "呷": 472, "呻": 473, "呼": 474, "命": 475, "咀": 476, "咁": 477, "咄": 478, "咇": 479, "咋": 480, "和": 481, "咐": 482, "咕": 483, "咖": 484, "咗": 485, "咦": 486, "咧": 487, "咩": 488, "咪": 489, "咬": 490, "咯": 491, "咳": 492, "咸": 493, "咽": 494, "咿": 495, "哀": 496, "品": 497, "哂": 498, "哄": 499, "哇": 500, "哈": 501, "哉": 502, "哋": 503, "响": 504, "哎": 505, "員": 506, "哣": 507, "哥": 508, "哦": 509, "哨": 510, "哩": 511, "哪": 512, "哭": 513, "哲": 514, "哺": 515, "哼": 516, "唇": 517, "唈": 518, "唉": 519, "唎": 520, "唏": 521, "唐": 522, "唔": 523, "唞": 524, "唥": 525, "唧": 526, "唪": 527, "售": 528, "唯": 529, "唱": 530, "唸": 531, "啄": 532, "啅": 533, "商": 534, "啊": 535, "啋": 536, "問": 537, "啕": 538, "啖": 539, "啜": 540, "啞": 541, "啟": 542, "啡": 543, "啤": 544, "啦": 545, "啩": 546, "啪": 547, "啫": 548, "啱": 549, "啲": 550, "啵": 551, "喀": 552, "喂": 553, "喃": 554, "善": 555, "喇": 556, "喉": 557, "喊": 558, "喎": 559, "喐": 560, "喔": 561, "喙": 562, "喚": 563, "喜": 564, "喝": 565, "喪": 566, "喫": 567, "喬": 568, "單": 569, "喱": 570, "喳": 571, "喺": 572, "喻": 573, "喼": 574, "嗅": 575, "嗇": 576, "嗌": 577, "嗎": 578, "嗒": 579, "嗚": 580, "嗜": 581, "嗡": 582, "嗤": 583, "嗦": 584, "嗰": 585, "嗱": 586, "嗲": 587, "嗶": 588, "嗷": 589, "嗽": 590, "嘅": 591, "嘆": 592, "嘈": 593, "嘉": 594, "嘔": 595, "嘗": 596, "嘛": 597, "嘜": 598, "嘞": 599, "嘟": 600, "嘢": 601, "嘥": 602, "嘩": 603, "嘲": 604, "嘴": 605, "嘸": 606, "噁": 607, "噃": 608, "噄": 609, "噉": 610, "噌": 611, "噎": 612, "噏": 613, "噓": 614, "噚": 615, "噤": 616, "器": 617, "噪": 618, "噬": 619, "噴": 620, "噶": 621, "噹": 622, "嚇": 623, "嚎": 624, "嚐": 625, "嚕": 626, "嚟": 627, "嚡": 628, "嚢": 629, "嚥": 630, "嚨": 631, "嚴": 632, "嚷": 633, "嚼": 634, "嚿": 635, "囉": 636, "囊": 637, "囌": 638, "囍": 639, "囑": 640, "囚": 641, "四": 642, "囝": 643, "回": 644, "因": 645, "囡": 646, "囪": 647, "困": 648, "固": 649, "圃": 650, "圈": 651, "國": 652, "圍": 653, "圑": 654, "園": 655, "圓": 656, "圖": 657, "團": 658, "土": 659, "在": 660, "圭": 661, "地": 662, "圳": 663, "圾": 664, "址": 665, "均": 666, "坊": 667, "坎": 668, "坐": 669, "坑": 670, "坡": 671, "坤": 672, "坦": 673, "坪": 674, "坭": 675, "坳": 676, "垂": 677, "垃": 678, "型": 679, "垢": 680, "埃": 681, "埋": 682, "城": 683, "埔": 684, "埗": 685, "埞": 686, "域": 687, "埠": 688, "埲": 689, "執": 690, "培": 691, "基": 692, "堂": 693, "堅": 694, "堆": 695, "堡": 696, "堤": 697, "堪": 698, "報": 699, "場": 700, "堵": 701, "塊": 702, "塑": 703, "塔": 704, "塗": 705, "塘": 706, "塞": 707, "塢": 708, "填": 709, "塱": 710, "塵": 711, "塾": 712, "境": 713, "墅": 714, "墊": 715, "墓": 716, "墜": 717, "增": 718, "墟": 719, "墨": 720, "墩": 721, "墮": 722, "墳": 723, "壁": 724, "壆": 725, "壇": 726, "壓": 727, "壘": 728, "壞": 729, "壟": 730, "壩": 731, "士": 732, "壯": 733, "壹": 734, "壺": 735, "壽": 736, "夏": 737, "夕": 738, "外": 739, "多": 740, "夜": 741, "夠": 742, "夢": 743, "夥": 744, "大": 745, "天": 746, "太": 747, "夫": 748, "央": 749, "失": 750, "夷": 751, "夾": 752, "奀": 753, "奄": 754, "奇": 755, "奈": 756, "奉": 757, "奏": 758, "契": 759, "奔": 760, "奕": 761, "套": 762, "奚": 763, "奧": 764, "奪": 765, "奮": 766, "女": 767, "奴": 768, "奶": 769, "奸": 770, "她": 771, "好": 772, "如": 773, "妄": 774, "妒": 775, "妓": 776, "妙": 777, "妝": 778, "妥": 779, "妨": 780, "妳": 781, "妹": 782, "妻": 783, "姆": 784, "姊": 785, "始": 786, "姐": 787, "姑": 788, "姓": 789, "委": 790, "姣": 791, "姦": 792, "姨": 793, "姬": 794, "姻": 795, "姿": 796, "威": 797, "娃": 798, "娘": 799, "娛": 800, "娜": 801, "娥": 802, "娶": 803, "婆": 804, "婚": 805, "婦": 806, "媒": 807, "媽": 808, "媾": 809, "嫁": 810, "嫂": 811, "嫉": 812, "嫌": 813, "嫩": 814, "嫪": 815, "嫲": 816, "嫻": 817, "嬉": 818, "嬲": 819, "嬸": 820, "子": 821, "孔": 822, "孖": 823, "字": 824, "存": 825, "孚": 826, "孝": 827, "孟": 828, "季": 829, "孤": 830, "孥": 831, "孩": 832, "孫": 833, "孭": 834, "孰": 835, "孱": 836, "學": 837, "孽": 838, "它": 839, "宅": 840, "宇": 841, "守": 842, "安": 843, "宋": 844, "完": 845, "宏": 846, "宗": 847, "官": 848, "宙": 849, "定": 850, "宛": 851, "宜": 852, "客": 853, "宣": 854, "室": 855, "宮": 856, "宰": 857, "害": 858, "宴": 859, "宵": 860, "家": 861, "宸": 862, "容": 863, "宿": 864, "寂": 865, "寃": 866, "寄": 867, "寅": 868, "密": 869, "寇": 870, "富": 871, "寒": 872, "寓": 873, "寞": 874, "察": 875, "寡": 876, "寢": 877, "實": 878, "寧": 879, "寨": 880, "審": 881, "寫": 882, "寬": 883, "寮": 884, "寶": 885, "寸": 886, "寺": 887, "封": 888, "射": 889, "將": 890, "專": 891, "尊": 892, "尋": 893, "對": 894, "導": 895, "小": 896, "少": 897, "尖": 898, "尚": 899, "尤": 900, "尬": 901, "就": 902, "尷": 903, "尺": 904, "尼": 905, "尾": 906, "尿": 907, "局": 908, "屁": 909, "居": 910, "屆": 911, "屈": 912, "屋": 913, "屌": 914, "屍": 915, "屎": 916, "屏": 917, "屑": 918, "展": 919, "屙": 920, "屠": 921, "層": 922, "履": 923, "屬": 924, "屯": 925, "山": 926, "屹": 927, "岀": 928, "岡": 929, "岩": 930, "岬": 931, "岳": 932, "岸": 933, "峒": 934, "峯": 935, "峰": 936, "島": 937, "峻": 938, "峽": 939, "崆": 940, "崇": 941, "崗": 942, "崙": 943, "崧": 944, "崩": 945, "嵌": 946, "嶄": 947, "嶙": 948, "嶺": 949, "嶼": 950, "巉": 951, "巒": 952, "川": 953, "州": 954, "巡": 955, "巢": 956, "工": 957, "左": 958, "巧": 959, "巨": 960, "巫": 961, "差": 962, "己": 963, "已": 964, "巴": 965, "巷": 966, "巾": 967, "市": 968, "布": 969, "帆": 970, "希": 971, "帖": 972, "帚": 973, "帝": 974, "帥": 975, "師": 976, "席": 977, "帳": 978, "帶": 979, "常": 980, "帽": 981, "幅": 982, "幕": 983, "幡": 984, "幢": 985, "幣": 986, "幫": 987, "干": 988, "平": 989, "年": 990, "幸": 991, "幹": 992, "幻": 993, "幼": 994, "幽": 995, "幾": 996, "庇": 997, "床": 998, "序": 999, "底": 1000, "店": 1001, "庚": 1002, "府": 1003, "度": 1004, "座": 1005, "庫": 1006, "庭": 1007, "庵": 1008, "庶": 1009, "康": 1010, "庸": 1011, "廁": 1012, "廂": 1013, "廈": 1014, "廉": 1015, "廊": 1016, "廖": 1017, "廚": 1018, "廟": 1019, "廠": 1020, "廢": 1021, "廣": 1022, "廬": 1023, "廳": 1024, "延": 1025, "廷": 1026, "建": 1027, "廿": 1028, "弄": 1029, "弊": 1030, "弍": 1031, "式": 1032, "弓": 1033, "引": 1034, "弟": 1035, "弱": 1036, "張": 1037, "強": 1038, "弸": 1039, "强": 1040, "弼": 1041, "彈": 1042, "彌": 1043, "彎": 1044, "彗": 1045, "彙": 1046, "形": 1047, "彤": 1048, "彥": 1049, "彩": 1050, "彪": 1051, "彭": 1052, "影": 1053, "彷": 1054, "役": 1055, "彼": 1056, "彿": 1057, "往": 1058, "征": 1059, "待": 1060, "徇": 1061, "很": 1062, "徊": 1063, "律": 1064, "後": 1065, "徐": 1066, "徑": 1067, "徒": 1068, "得": 1069, "徘": 1070, "從": 1071, "御": 1072, "復": 1073, "循": 1074, "微": 1075, "徵": 1076, "德": 1077, "徹": 1078, "徽": 1079, "心": 1080, "必": 1081, "忌": 1082, "忍": 1083, "志": 1084, "忘": 1085, "忙": 1086, "忠": 1087, "快": 1088, "念": 1089, "忽": 1090, "忿": 1091, "怎": 1092, "怒": 1093, "怕": 1094, "思": 1095, "怡": 1096, "急": 1097, "怦": 1098, "性": 1099, "怨": 1100, "怪": 1101, "怯": 1102, "恃": 1103, "恆": 1104, "恐": 1105, "恒": 1106, "恕": 1107, "恙": 1108, "恢": 1109, "恤": 1110, "恥": 1111, "恨": 1112, "恩": 1113, "恭": 1114, "息": 1115, "恰": 1116, "悅": 1117, "悉": 1118, "悒": 1119, "悔": 1120, "悖": 1121, "悗": 1122, "悟": 1123, "悠": 1124, "患": 1125, "您": 1126, "悲": 1127, "悶": 1128, "情": 1129, "惇": 1130, "惑": 1131, "惘": 1132, "惜": 1133, "惟": 1134, "惠": 1135, "惡": 1136, "惦": 1137, "惰": 1138, "惱": 1139, "想": 1140, "惶": 1141, "惹": 1142, "愁": 1143, "愈": 1144, "愉": 1145, "意": 1146, "愚": 1147, "愛": 1148, "感": 1149, "愧": 1150, "慈": 1151, "態": 1152, "慌": 1153, "慎": 1154, "慕": 1155, "慘": 1156, "慚": 1157, "慢": 1158, "慣": 1159, "慤": 1160, "慧": 1161, "慨": 1162, "慮": 1163, "慰": 1164, "慳": 1165, "慶": 1166, "慷": 1167, "慾": 1168, "憂": 1169, "憎": 1170, "憐": 1171, "憑": 1172, "憚": 1173, "憤": 1174, "憧": 1175, "憩": 1176, "憫": 1177, "憬": 1178, "憶": 1179, "憾": 1180, "懂": 1181, "懇": 1182, "應": 1183, "懊": 1184, "懞": 1185, "懣": 1186, "懵": 1187, "懶": 1188, "懷": 1189, "懺": 1190, "懼": 1191, "懿": 1192, "戀": 1193, "戇": 1194, "戊": 1195, "戎": 1196, "成": 1197, "我": 1198, "戒": 1199, "戕": 1200, "或": 1201, "戚": 1202, "戟": 1203, "戥": 1204, "截": 1205, "戰": 1206, "戲": 1207, "戴": 1208, "戶": 1209, "戽": 1210, "戾": 1211, "房": 1212, "所": 1213, "扂": 1214, "扇": 1215, "手": 1216, "才": 1217, "扎": 1218, "扑": 1219, "扒": 1220, "打": 1221, "托": 1222, "扣": 1223, "扭": 1224, "扮": 1225, "扯": 1226, "扶": 1227, "批": 1228, "扻": 1229, "扼": 1230, "找": 1231, "承": 1232, "技": 1233, "抄": 1234, "抆": 1235, "把": 1236, "抑": 1237, "抓": 1238, "投": 1239, "抖": 1240, "抗": 1241, "折": 1242, "抦": 1243, "抬": 1244, "抱": 1245, "抵": 1246, "抹": 1247, "押": 1248, "抽": 1249, "抿": 1250, "拂": 1251, "拃": 1252, "拆": 1253, "拉": 1254, "拋": 1255, "拌": 1256, "拍": 1257, "拎": 1258, "拐": 1259, "拒": 1260, "拓": 1261, "拔": 1262, "拖": 1263, "拗": 1264, "拘": 1265, "拙": 1266, "招": 1267, "拜": 1268, "括": 1269, "拮": 1270, "拯": 1271, "拱": 1272, "拳": 1273, "拼": 1274, "拾": 1275, "拿": 1276, "持": 1277, "指": 1278, "挈": 1279, "按": 1280, "挑": 1281, "挖": 1282, "挨": 1283, "挪": 1284, "挫": 1285, "振": 1286, "挺": 1287, "挽": 1288, "挾": 1289, "捉": 1290, "捋": 1291, "捌": 1292, "捐": 1293, "捕": 1294, "捨": 1295, "捩": 1296, "据": 1297, "捱": 1298, "捲": 1299, "捶": 1300, "捷": 1301, "捺": 1302, "捽": 1303, "掂": 1304, "掃": 1305, "掅": 1306, "授": 1307, "掉": 1308, "掌": 1309, "排": 1310, "掕": 1311, "掗": 1312, "掘": 1313, "掙": 1314, "掛": 1315, "掟": 1316, "掠": 1317, "採": 1318, "探": 1319, "掣": 1320, "接": 1321, "控": 1322, "推": 1323, "掩": 1324, "措": 1325, "揀": 1326, "揇": 1327, "揈": 1328, "揉": 1329, "提": 1330, "插": 1331, "揗": 1332, "揚": 1333, "換": 1334, "揞": 1335, "握": 1336, "揣": 1337, "揦": 1338, "揩": 1339, "揪": 1340, "揭": 1341, "揮": 1342, "揳": 1343, "援": 1344, "揸": 1345, "揼": 1346, "揾": 1347, "損": 1348, "搏": 1349, "搖": 1350, "搗": 1351, "搜": 1352, "搞": 1353, "搣": 1354, "搬": 1355, "搭": 1356, "搵": 1357, "搶": 1358, "搽": 1359, "摑": 1360, "摘": 1361, "摙": 1362, "摞": 1363, "摧": 1364, "摩": 1365, "摯": 1366, "摳": 1367, "摷": 1368, "摸": 1369, "摺": 1370, "撇": 1371, "撈": 1372, "撐": 1373, "撒": 1374, "撓": 1375, "撕": 1376, "撚": 1377, "撞": 1378, "撤": 1379, "撥": 1380, "撩": 1381, "撫": 1382, "播": 1383, "撮": 1384, "撲": 1385, "撳": 1386, "撻": 1387, "撼": 1388, "撿": 1389, "擁": 1390, "擂": 1391, "擅": 1392, "擇": 1393, "擊": 1394, "擋": 1395, "操": 1396, "擎": 1397, "擒": 1398, "擔": 1399, "擘": 1400, "據": 1401, "擤": 1402, "擦": 1403, "擬": 1404, "擰": 1405, "擲": 1406, "擴": 1407, "擸": 1408, "擺": 1409, "擾": 1410, "攀": 1411, "攋": 1412, "攏": 1413, "攔": 1414, "攘": 1415, "攝": 1416, "攞": 1417, "攣": 1418, "攤": 1419, "攪": 1420, "攬": 1421, "支": 1422, "攰": 1423, "收": 1424, "攸": 1425, "改": 1426, "攻": 1427, "放": 1428, "政": 1429, "故": 1430, "效": 1431, "敏": 1432, "救": 1433, "敗": 1434, "敘": 1435, "教": 1436, "敝": 1437, "敢": 1438, "散": 1439, "敦": 1440, "敬": 1441, "敲": 1442, "整": 1443, "敵": 1444, "敷": 1445, "數": 1446, "斂": 1447, "斃": 1448, "文": 1449, "斐": 1450, "斑": 1451, "斗": 1452, "料": 1453, "斜": 1454, "斟": 1455, "斤": 1456, "斧": 1457, "斬": 1458, "斯": 1459, "新": 1460, "斷": 1461, "方": 1462, "於": 1463, "施": 1464, "旁": 1465, "旅": 1466, "旋": 1467, "族": 1468, "旗": 1469, "既": 1470, "旣": 1471, "日": 1472, "旦": 1473, "旨": 1474, "早": 1475, "旬": 1476, "旭": 1477, "旳": 1478, "旺": 1479, "昂": 1480, "昃": 1481, "昆": 1482, "昇": 1483, "昌": 1484, "明": 1485, "昏": 1486, "昐": 1487, "易": 1488, "昔": 1489, "星": 1490, "映": 1491, "春": 1492, "昧": 1493, "昨": 1494, "昭": 1495, "是": 1496, "昺": 1497, "時": 1498, "晃": 1499, "晉": 1500, "晌": 1501, "晏": 1502, "晒": 1503, "晚": 1504, "晝": 1505, "晤": 1506, "晨": 1507, "普": 1508, "景": 1509, "晴": 1510, "晶": 1511, "智": 1512, "晾": 1513, "暇": 1514, "暈": 1515, "暉": 1516, "暑": 1517, "暖": 1518, "暗": 1519, "暢": 1520, "暨": 1521, "暫": 1522, "暮": 1523, "暴": 1524, "暸": 1525, "曆": 1526, "曉": 1527, "曖": 1528, "曜": 1529, "曬": 1530, "曱": 1531, "曲": 1532, "曳": 1533, "更": 1534, "書": 1535, "曹": 1536, "曼": 1537, "曾": 1538, "替": 1539, "最": 1540, "會": 1541, "月": 1542, "有": 1543, "朋": 1544, "服": 1545, "朕": 1546, "朗": 1547, "望": 1548, "朝": 1549, "期": 1550, "朦": 1551, "朧": 1552, "木": 1553, "未": 1554, "末": 1555, "本": 1556, "札": 1557, "朱": 1558, "朴": 1559, "朵": 1560, "朽": 1561, "杆": 1562, "杉": 1563, "李": 1564, "杏": 1565, "材": 1566, "村": 1567, "杖": 1568, "杜": 1569, "杞": 1570, "束": 1571, "来": 1572, "杭": 1573, "杯": 1574, "杰": 1575, "東": 1576, "杷": 1577, "松": 1578, "板": 1579, "枇": 1580, "枉": 1581, "枕": 1582, "林": 1583, "枚": 1584, "果": 1585, "枝": 1586, "枯": 1587, "枱": 1588, "架": 1589, "柄": 1590, "柏": 1591, "某": 1592, "柑": 1593, "柒": 1594, "染": 1595, "柔": 1596, "柚": 1597, "柞": 1598, "查": 1599, "柯": 1600, "柱": 1601, "柳": 1602, "柴": 1603, "柵": 1604, "柺": 1605, "柿": 1606, "栗": 1607, "校": 1608, "栢": 1609, "核": 1610, "根": 1611, "格": 1612, "栽": 1613, "桂": 1614, "桃": 1615, "桅": 1616, "案": 1617, "桌": 1618, "桐": 1619, "桑": 1620, "桔": 1621, "桶": 1622, "桿": 1623, "梁": 1624, "梅": 1625, "梓": 1626, "梗": 1627, "梘": 1628, "條": 1629, "梧": 1630, "梨": 1631, "梯": 1632, "械": 1633, "梳": 1634, "梵": 1635, "棄": 1636, "棉": 1637, "棋": 1638, "棍": 1639, "棒": 1640, "棕": 1641, "棖": 1642, "棗": 1643, "棘": 1644, "棚": 1645, "棟": 1646, "棠": 1647, "棧": 1648, "森": 1649, "棲": 1650, "棺": 1651, "椅": 1652, "植": 1653, "椏": 1654, "椒": 1655, "椰": 1656, "楂": 1657, "楊": 1658, "楋": 1659, "楓": 1660, "楚": 1661, "楣": 1662, "業": 1663, "極": 1664, "概": 1665, "榆": 1666, "榕": 1667, "榚": 1668, "榛": 1669, "榜": 1670, "榨": 1671, "榮": 1672, "榴": 1673, "構": 1674, "槍": 1675, "槐": 1676, "槤": 1677, "槽": 1678, "樂": 1679, "樊": 1680, "樑": 1681, "樓": 1682, "標": 1683, "樞": 1684, "樟": 1685, "模": 1686, "樣": 1687, "樸": 1688, "樹": 1689, "樺": 1690, "樽": 1691, "橋": 1692, "橘": 1693, "橙": 1694, "機": 1695, "橡": 1696, "橢": 1697, "橫": 1698, "檀": 1699, "檔": 1700, "檢": 1701, "檬": 1702, "檯": 1703, "檳": 1704, "檸": 1705, "檻": 1706, "櫃": 1707, "櫈": 1708, "櫚": 1709, "櫸": 1710, "櫻": 1711, "欄": 1712, "權": 1713, "欖": 1714, "欠": 1715, "次": 1716, "欣": 1717, "欲": 1718, "欺": 1719, "欽": 1720, "款": 1721, "歇": 1722, "歉": 1723, "歌": 1724, "歎": 1725, "歐": 1726, "歛": 1727, "歡": 1728, "止": 1729, "正": 1730, "此": 1731, "步": 1732, "武": 1733, "歧": 1734, "歪": 1735, "歲": 1736, "歷": 1737, "歸": 1738, "歹": 1739, "死": 1740, "殄": 1741, "殆": 1742, "殊": 1743, "殖": 1744, "殘": 1745, "殮": 1746, "段": 1747, "殷": 1748, "殺": 1749, "殼": 1750, "殿": 1751, "毀": 1752, "毅": 1753, "毋": 1754, "母": 1755, "每": 1756, "毒": 1757, "毓": 1758, "比": 1759, "毛": 1760, "毡": 1761, "毫": 1762, "氏": 1763, "民": 1764, "氓": 1765, "氛": 1766, "氣": 1767, "氧": 1768, "氯": 1769, "水": 1770, "永": 1771, "氹": 1772, "汀": 1773, "汁": 1774, "求": 1775, "汕": 1776, "汗": 1777, "汝": 1778, "江": 1779, "池": 1780, "污": 1781, "汪": 1782, "汰": 1783, "汶": 1784, "決": 1785, "汽": 1786, "沃": 1787, "沈": 1788, "沉": 1789, "沐": 1790, "沒": 1791, "沖": 1792, "沙": 1793, "沛": 1794, "沫": 1795, "沮": 1796, "沱": 1797, "河": 1798, "油": 1799, "治": 1800, "沽": 1801, "沾": 1802, "沿": 1803, "況": 1804, "泄": 1805, "泉": 1806, "泊": 1807, "泌": 1808, "泓": 1809, "法": 1810, "泛": 1811, "泡": 1812, "波": 1813, "泥": 1814, "注": 1815, "泮": 1816, "泰": 1817, "泳": 1818, "洋": 1819, "洗": 1820, "洛": 1821, "洞": 1822, "津": 1823, "洪": 1824, "洱": 1825, "洲": 1826, "洶": 1827, "活": 1828, "洽": 1829, "派": 1830, "流": 1831, "浙": 1832, "浚": 1833, "浣": 1834, "浦": 1835, "浩": 1836, "浪": 1837, "浮": 1838, "浴": 1839, "海": 1840, "浸": 1841, "涂": 1842, "消": 1843, "涉": 1844, "涌": 1845, "涕": 1846, "涯": 1847, "液": 1848, "涷": 1849, "涼": 1850, "淋": 1851, "淒": 1852, "淘": 1853, "淚": 1854, "淡": 1855, "淥": 1856, "淨": 1857, "淩": 1858, "淪": 1859, "淫": 1860, "深": 1861, "混": 1862, "淸": 1863, "淺": 1864, "添": 1865, "清": 1866, "減": 1867, "渝": 1868, "渠": 1869, "渡": 1870, "渣": 1871, "渦": 1872, "温": 1873, "測": 1874, "渭": 1875, "港": 1876, "渴": 1877, "游": 1878, "渺": 1879, "渾": 1880, "湃": 1881, "湖": 1882, "湘": 1883, "湧": 1884, "湯": 1885, "溋": 1886, "源": 1887, "準": 1888, "溜": 1889, "溝": 1890, "溢": 1891, "溪": 1892, "溫": 1893, "溶": 1894, "滂": 1895, "滄": 1896, "滅": 1897, "滋": 1898, "滌": 1899, "滑": 1900, "滔": 1901, "滘": 1902, "滙": 1903, "滯": 1904, "滷": 1905, "滾": 1906, "滿": 1907, "漁": 1908, "漂": 1909, "漆": 1910, "漏": 1911, "漓": 1912, "演": 1913, "漠": 1914, "漢": 1915, "漫": 1916, "漬": 1917, "漲": 1918, "漸": 1919, "漾": 1920, "漿": 1921, "潑": 1922, "潔": 1923, "潛": 1924, "潤": 1925, "潭": 1926, "潮": 1927, "潰": 1928, "潲": 1929, "潷": 1930, "潺": 1931, "澄": 1932, "澍": 1933, "澎": 1934, "澡": 1935, "澤": 1936, "澩": 1937, "澱": 1938, "澳": 1939, "激": 1940, "濃": 1941, "濕": 1942, "濛": 1943, "濟": 1944, "濠": 1945, "濤": 1946, "濫": 1947, "濱": 1948, "濾": 1949, "瀉": 1950, "瀚": 1951, "瀝": 1952, "瀟": 1953, "瀨": 1954, "瀾": 1955, "灑": 1956, "灘": 1957, "灣": 1958, "火": 1959, "灰": 1960, "灼": 1961, "災": 1962, "炆": 1963, "炊": 1964, "炎": 1965, "炒": 1966, "炕": 1967, "炙": 1968, "炭": 1969, "炮": 1970, "炳": 1971, "炸": 1972, "為": 1973, "烈": 1974, "烏": 1975, "烘": 1976, "烙": 1977, "烟": 1978, "烤": 1979, "烹": 1980, "焉": 1981, "焗": 1982, "焚": 1983, "無": 1984, "焦": 1985, "然": 1986, "煉": 1987, "煎": 1988, "煖": 1989, "煙": 1990, "煞": 1991, "煤": 1992, "照": 1993, "煨": 1994, "煩": 1995, "煮": 1996, "煲": 1997, "煽": 1998, "熄": 1999, "熊": 2000, "熒": 2001, "熔": 2002, "熙": 2003, "熟": 2004, "熬": 2005, "熱": 2006, "熾": 2007, "燃": 2008, "燈": 2009, "燉": 2010, "燒": 2011, "燕": 2012, "燜": 2013, "營": 2014, "燥": 2015, "燭": 2016, "燴": 2017, "燶": 2018, "爆": 2019, "爐": 2020, "爛": 2021, "爪": 2022, "爬": 2023, "爭": 2024, "爲": 2025, "爵": 2026, "父": 2027, "爸": 2028, "爹": 2029, "爺": 2030, "爽": 2031, "爾": 2032, "牀": 2033, "牆": 2034, "片": 2035, "版": 2036, "牌": 2037, "牘": 2038, "牙": 2039, "牛": 2040, "牡": 2041, "牢": 2042, "牧": 2043, "物": 2044, "牯": 2045, "牲": 2046, "特": 2047, "牽": 2048, "犀": 2049, "犧": 2050, "犬": 2051, "犯": 2052, "狀": 2053, "狂": 2054, "狄": 2055, "狐": 2056, "狗": 2057, "狠": 2058, "狡": 2059, "狩": 2060, "狸": 2061, "狹": 2062, "狼": 2063, "猄": 2064, "猛": 2065, "猜": 2066, "猴": 2067, "猶": 2068, "猾": 2069, "獄": 2070, "獅": 2071, "獎": 2072, "獠": 2073, "獨": 2074, "獲": 2075, "獵": 2076, "獸": 2077, "獻": 2078, "玄": 2079, "率": 2080, "玉": 2081, "王": 2082, "玟": 2083, "玩": 2084, "玫": 2085, "玻": 2086, "珀": 2087, "珊": 2088, "珍": 2089, "珏": 2090, "珒": 2091, "珠": 2092, "班": 2093, "現": 2094, "球": 2095, "理": 2096, "琉": 2097, "琛": 2098, "琦": 2099, "琳": 2100, "琴": 2101, "琵": 2102, "琶": 2103, "瑕": 2104, "瑙": 2105, "瑜": 2106, "瑞": 2107, "瑟": 2108, "瑤": 2109, "瑧": 2110, "瑪": 2111, "瑰": 2112, "璀": 2113, "璃": 2114, "璇": 2115, "璉": 2116, "璐": 2117, "璟": 2118, "璧": 2119, "璨": 2120, "環": 2121, "璵": 2122, "璽": 2123, "瓊": 2124, "瓏": 2125, "瓜": 2126, "瓦": 2127, "瓶": 2128, "甘": 2129, "甚": 2130, "甜": 2131, "生": 2132, "產": 2133, "甥": 2134, "用": 2135, "甩": 2136, "甫": 2137, "田": 2138, "由": 2139, "甲": 2140, "申": 2141, "甴": 2142, "男": 2143, "甸": 2144, "畀": 2145, "畋": 2146, "界": 2147, "畏": 2148, "畐": 2149, "畔": 2150, "留": 2151, "畜": 2152, "畢": 2153, "略": 2154, "番": 2155, "畫": 2156, "異": 2157, "當": 2158, "畿": 2159, "疆": 2160, "疇": 2161, "疊": 2162, "疏": 2163, "疑": 2164, "疤": 2165, "疫": 2166, "疲": 2167, "疵": 2168, "疹": 2169, "疼": 2170, "疾": 2171, "病": 2172, "症": 2173, "痕": 2174, "痛": 2175, "痢": 2176, "痰": 2177, "痱": 2178, "痴": 2179, "痺": 2180, "痾": 2181, "瘀": 2182, "瘁": 2183, "瘋": 2184, "瘓": 2185, "瘟": 2186, "瘡": 2187, "瘦": 2188, "療": 2189, "癆": 2190, "癌": 2191, "癡": 2192, "癢": 2193, "癩": 2194, "癮": 2195, "癱": 2196, "癲": 2197, "登": 2198, "發": 2199, "白": 2200, "百": 2201, "皂": 2202, "的": 2203, "皆": 2204, "皇": 2205, "皚": 2206, "皮": 2207, "皺": 2208, "盃": 2209, "盅": 2210, "盆": 2211, "盈": 2212, "益": 2213, "盏": 2214, "盒": 2215, "盔": 2216, "盛": 2217, "盜": 2218, "盞": 2219, "盟": 2220, "盡": 2221, "監": 2222, "盤": 2223, "盧": 2224, "盪": 2225, "目": 2226, "盲": 2227, "直": 2228, "相": 2229, "盼": 2230, "盾": 2231, "省": 2232, "眉": 2233, "看": 2234, "眞": 2235, "真": 2236, "眠": 2237, "眨": 2238, "眯": 2239, "眶": 2240, "眼": 2241, "眾": 2242, "着": 2243, "睄": 2244, "睇": 2245, "睏": 2246, "睛": 2247, "睜": 2248, "睡": 2249, "督": 2250, "睥": 2251, "睦": 2252, "睨": 2253, "睬": 2254, "睹": 2255, "瞅": 2256, "瞌": 2257, "瞓": 2258, "瞞": 2259, "瞬": 2260, "瞭": 2261, "矛": 2262, "知": 2263, "矩": 2264, "短": 2265, "矮": 2266, "石": 2267, "砂": 2268, "砌": 2269, "砍": 2270, "研": 2271, "砰": 2272, "砲": 2273, "破": 2274, "砵": 2275, "砸": 2276, "硤": 2277, "硬": 2278, "碇": 2279, "碉": 2280, "碌": 2281, "碎": 2282, "碑": 2283, "碗": 2284, "碘": 2285, "碟": 2286, "碧": 2287, "碰": 2288, "確": 2289, "碼": 2290, "磅": 2291, "磐": 2292, "磚": 2293, "磡": 2294, "磨": 2295, "磯": 2296, "礎": 2297, "礙": 2298, "礦": 2299, "礫": 2300, "示": 2301, "社": 2302, "祈": 2303, "祐": 2304, "祖": 2305, "祝": 2306, "神": 2307, "祟": 2308, "祠": 2309, "祥": 2310, "票": 2311, "祭": 2312, "祿": 2313, "禁": 2314, "禍": 2315, "福": 2316, "禡": 2317, "禧": 2318, "禪": 2319, "禮": 2320, "禱": 2321, "禽": 2322, "禾": 2323, "秀": 2324, "私": 2325, "秅": 2326, "秉": 2327, "秋": 2328, "科": 2329, "秒": 2330, "秘": 2331, "租": 2332, "秤": 2333, "秦": 2334, "秧": 2335, "秩": 2336, "移": 2337, "稀": 2338, "稅": 2339, "稈": 2340, "程": 2341, "稍": 2342, "稔": 2343, "稚": 2344, "稠": 2345, "種": 2346, "稱": 2347, "稻": 2348, "稿": 2349, "穀": 2350, "穌": 2351, "積": 2352, "穎": 2353, "穗": 2354, "穢": 2355, "穩": 2356, "穫": 2357, "穴": 2358, "究": 2359, "空": 2360, "穿": 2361, "突": 2362, "窄": 2363, "窒": 2364, "窗": 2365, "窠": 2366, "窩": 2367, "窮": 2368, "窰": 2369, "窿": 2370, "竄": 2371, "竅": 2372, "竇": 2373, "竊": 2374, "立": 2375, "站": 2376, "竟": 2377, "章": 2378, "童": 2379, "端": 2380, "競": 2381, "竹": 2382, "笆": 2383, "笈": 2384, "笏": 2385, "笑": 2386, "笛": 2387, "笠": 2388, "符": 2389, "笨": 2390, "笪": 2391, "第": 2392, "筆": 2393, "等": 2394, "筋": 2395, "筍": 2396, "筏": 2397, "筒": 2398, "答": 2399, "策": 2400, "筲": 2401, "筵": 2402, "筷": 2403, "箋": 2404, "箍": 2405, "箕": 2406, "算": 2407, "管": 2408, "箭": 2409, "箱": 2410, "箴": 2411, "節": 2412, "範": 2413, "篇": 2414, "築": 2415, "篋": 2416, "篙": 2417, "篤": 2418, "篳": 2419, "簍": 2420, "簡": 2421, "簽": 2422, "簾": 2423, "簿": 2424, "籃": 2425, "籌": 2426, "籍": 2427, "籐": 2428, "籠": 2429, "籤": 2430, "籬": 2431, "籮": 2432, "籲": 2433, "米": 2434, "籽": 2435, "粉": 2436, "粒": 2437, "粗": 2438, "粟": 2439, "粥": 2440, "粳": 2441, "粵": 2442, "粹": 2443, "粼": 2444, "精": 2445, "粿": 2446, "糉": 2447, "糊": 2448, "糍": 2449, "糕": 2450, "糖": 2451, "糞": 2452, "糟": 2453, "糧": 2454, "糯": 2455, "糰": 2456, "糴": 2457, "系": 2458, "糾": 2459, "紀": 2460, "約": 2461, "紅": 2462, "納": 2463, "紐": 2464, "紓": 2465, "純": 2466, "紗": 2467, "紙": 2468, "級": 2469, "紛": 2470, "素": 2471, "索": 2472, "紥": 2473, "紫": 2474, "紮": 2475, "累": 2476, "細": 2477, "紳": 2478, "紹": 2479, "終": 2480, "組": 2481, "結": 2482, "絕": 2483, "絞": 2484, "絡": 2485, "給": 2486, "絨": 2487, "統": 2488, "絲": 2489, "絶": 2490, "綁": 2491, "經": 2492, "綜": 2493, "綠": 2494, "綫": 2495, "維": 2496, "網": 2497, "綿": 2498, "緊": 2499, "緒": 2500, "緘": 2501, "線": 2502, "緣": 2503, "編": 2504, "緩": 2505, "緬": 2506, "練": 2507, "緻": 2508, "縉": 2509, "縊": 2510, "縛": 2511, "縫": 2512, "縮": 2513, "縱": 2514, "縷": 2515, "總": 2516, "績": 2517, "繁": 2518, "織": 2519, "繞": 2520, "繩": 2521, "繫": 2522, "繳": 2523, "繼": 2524, "續": 2525, "纏": 2526, "纔": 2527, "纖": 2528, "纜": 2529, "缸": 2530, "缺": 2531, "缽": 2532, "罅": 2533, "罐": 2534, "罔": 2535, "罕": 2536, "罟": 2537, "罩": 2538, "罪": 2539, "置": 2540, "罰": 2541, "署": 2542, "罵": 2543, "罷": 2544, "羅": 2545, "羈": 2546, "羊": 2547, "羌": 2548, "美": 2549, "羞": 2550, "羣": 2551, "群": 2552, "義": 2553, "羲": 2554, "羹": 2555, "羽": 2556, "翁": 2557, "翅": 2558, "翌": 2559, "習": 2560, "翔": 2561, "翠": 2562, "翡": 2563, "翩": 2564, "翰": 2565, "翱": 2566, "翻": 2567, "翼": 2568, "耀": 2569, "老": 2570, "考": 2571, "者": 2572, "而": 2573, "耍": 2574, "耐": 2575, "耕": 2576, "耗": 2577, "耘": 2578, "耳": 2579, "耶": 2580, "耷": 2581, "聆": 2582, "聊": 2583, "聖": 2584, "聘": 2585, "聚": 2586, "聞": 2587, "聯": 2588, "聰": 2589, "聲": 2590, "聳": 2591, "聶": 2592, "職": 2593, "聽": 2594, "肅": 2595, "肆": 2596, "肇": 2597, "肉": 2598, "肋": 2599, "肌": 2600, "肓": 2601, "肖": 2602, "肘": 2603, "肚": 2604, "肛": 2605, "肝": 2606, "股": 2607, "肥": 2608, "肨": 2609, "肩": 2610, "肯": 2611, "育": 2612, "肴": 2613, "肺": 2614, "胃": 2615, "背": 2616, "胎": 2617, "胚": 2618, "胡": 2619, "胭": 2620, "胸": 2621, "胺": 2622, "能": 2623, "脂": 2624, "脅": 2625, "脆": 2626, "脈": 2627, "脊": 2628, "脫": 2629, "脷": 2630, "脹": 2631, "脾": 2632, "腋": 2633, "腍": 2634, "腎": 2635, "腐": 2636, "腔": 2637, "腕": 2638, "腥": 2639, "腦": 2640, "腩": 2641, "腫": 2642, "腰": 2643, "腳": 2644, "腸": 2645, "腺": 2646, "腿": 2647, "膀": 2648, "膊": 2649, "膏": 2650, "膚": 2651, "膜": 2652, "膝": 2653, "膠": 2654, "膨": 2655, "膩": 2656, "膳": 2657, "膺": 2658, "膽": 2659, "臂": 2660, "臉": 2661, "臘": 2662, "臟": 2663, "臣": 2664, "臨": 2665, "自": 2666, "臭": 2667, "至": 2668, "致": 2669, "臺": 2670, "臻": 2671, "臼": 2672, "舂": 2673, "舅": 2674, "與": 2675, "興": 2676, "舉": 2677, "舊": 2678, "舌": 2679, "舍": 2680, "舐": 2681, "舒": 2682, "舔": 2683, "舖": 2684, "舞": 2685, "舟": 2686, "舢": 2687, "舨": 2688, "航": 2689, "般": 2690, "舶": 2691, "船": 2692, "艇": 2693, "艦": 2694, "良": 2695, "艱": 2696, "色": 2697, "艷": 2698, "芋": 2699, "芒": 2700, "芙": 2701, "芝": 2702, "芥": 2703, "芬": 2704, "芭": 2705, "芯": 2706, "花": 2707, "芳": 2708, "芹": 2709, "芽": 2710, "苑": 2711, "苔": 2712, "苗": 2713, "苟": 2714, "苣": 2715, "若": 2716, "苦": 2717, "英": 2718, "茂": 2719, "范": 2720, "茄": 2721, "茅": 2722, "茫": 2723, "茵": 2724, "茶": 2725, "茸": 2726, "荃": 2727, "草": 2728, "荊": 2729, "荒": 2730, "荔": 2731, "荷": 2732, "莆": 2733, "莉": 2734, "莊": 2735, "莎": 2736, "莓": 2737, "莞": 2738, "莫": 2739, "莽": 2740, "菁": 2741, "菇": 2742, "菊": 2743, "菌": 2744, "菓": 2745, "菜": 2746, "菠": 2747, "菩": 2748, "華": 2749, "菱": 2750, "菲": 2751, "菴": 2752, "萃": 2753, "萄": 2754, "萊": 2755, "萍": 2756, "萬": 2757, "萺": 2758, "落": 2759, "葉": 2760, "著": 2761, "葛": 2762, "葡": 2763, "董": 2764, "葫": 2765, "葬": 2766, "葳": 2767, "葵": 2768, "蒂": 2769, "蒙": 2770, "蒜": 2771, "蒡": 2772, "蒲": 2773, "蒸": 2774, "蒼": 2775, "蓀": 2776, "蓆": 2777, "蓉": 2778, "蓋": 2779, "蓓": 2780, "蓬": 2781, "蓮": 2782, "蓺": 2783, "蔓": 2784, "蔔": 2785, "蔗": 2786, "蔥": 2787, "蔫": 2788, "蔬": 2789, "蔭": 2790, "蔽": 2791, "蕃": 2792, "蕉": 2793, "蕎": 2794, "蕙": 2795, "蕩": 2796, "蕪": 2797, "蕭": 2798, "蕾": 2799, "薄": 2800, "薇": 2801, "薈": 2802, "薏": 2803, "薑": 2804, "薩": 2805, "薪": 2806, "薯": 2807, "薰": 2808, "藉": 2809, "藍": 2810, "藏": 2811, "藐": 2812, "藕": 2813, "藝": 2814, "藤": 2815, "藥": 2816, "藹": 2817, "蘅": 2818, "蘆": 2819, "蘇": 2820, "蘋": 2821, "蘑": 2822, "蘭": 2823, "蘸": 2824, "蘿": 2825, "虎": 2826, "虐": 2827, "虓": 2828, "處": 2829, "虛": 2830, "號": 2831, "虧": 2832, "虱": 2833, "虹": 2834, "蚊": 2835, "蚌": 2836, "蚝": 2837, "蚵": 2838, "蚺": 2839, "蛇": 2840, "蛋": 2841, "蛛": 2842, "蛟": 2843, "蛤": 2844, "蜂": 2845, "蜆": 2846, "蜊": 2847, "蜘": 2848, "蜜": 2849, "蜢": 2850, "蝕": 2851, "蝗": 2852, "蝦": 2853, "蝨": 2854, "蝴": 2855, "蝶": 2856, "蝸": 2857, "融": 2858, "螞": 2859, "螢": 2860, "螺": 2861, "蟀": 2862, "蟆": 2863, "蟋": 2864, "蟠": 2865, "蟬": 2866, "蟲": 2867, "蟹": 2868, "蟻": 2869, "蠅": 2870, "蠔": 2871, "蠟": 2872, "蠢": 2873, "蠱": 2874, "蠻": 2875, "血": 2876, "衆": 2877, "行": 2878, "衍": 2879, "術": 2880, "街": 2881, "衙": 2882, "衛": 2883, "衝": 2884, "衞": 2885, "衡": 2886, "衣": 2887, "表": 2888, "衫": 2889, "衰": 2890, "衲": 2891, "衷": 2892, "袁": 2893, "袋": 2894, "袖": 2895, "被": 2896, "裁": 2897, "裏": 2898, "裔": 2899, "裕": 2900, "裙": 2901, "補": 2902, "裝": 2903, "裡": 2904, "裴": 2905, "製": 2906, "複": 2907, "褒": 2908, "褦": 2909, "褪": 2910, "褲": 2911, "褸": 2912, "襟": 2913, "襪": 2914, "襯": 2915, "襲": 2916, "西": 2917, "要": 2918, "覆": 2919, "見": 2920, "規": 2921, "覓": 2922, "視": 2923, "親": 2924, "覲": 2925, "覺": 2926, "覽": 2927, "觀": 2928, "角": 2929, "解": 2930, "觸": 2931, "言": 2932, "訂": 2933, "計": 2934, "訊": 2935, "討": 2936, "訓": 2937, "訕": 2938, "託": 2939, "記": 2940, "訝": 2941, "訪": 2942, "設": 2943, "許": 2944, "訴": 2945, "診": 2946, "註": 2947, "証": 2948, "詆": 2949, "詐": 2950, "評": 2951, "詞": 2952, "詢": 2953, "試": 2954, "詩": 2955, "詭": 2956, "話": 2957, "該": 2958, "詳": 2959, "詹": 2960, "誅": 2961, "誇": 2962, "誌": 2963, "認": 2964, "誓": 2965, "誕": 2966, "誘": 2967, "語": 2968, "誠": 2969, "誡": 2970, "誤": 2971, "誨": 2972, "說": 2973, "説": 2974, "誰": 2975, "課": 2976, "誼": 2977, "調": 2978, "談": 2979, "請": 2980, "諒": 2981, "論": 2982, "諗": 2983, "諜": 2984, "諦": 2985, "諧": 2986, "諫": 2987, "諷": 2988, "諸": 2989, "諺": 2990, "諾": 2991, "謀": 2992, "謁": 2993, "謂": 2994, "謊": 2995, "謎": 2996, "謙": 2997, "講": 2998, "謝": 2999, "謢": 3000, "謬": 3001, "謹": 3002, "謾": 3003, "證": 3004, "譎": 3005, "譖": 3006, "識": 3007, "譚": 3008, "譜": 3009, "警": 3010, "譬": 3011, "譯": 3012, "議": 3013, "譴": 3014, "護": 3015, "譽": 3016, "讀": 3017, "變": 3018, "讎": 3019, "讓": 3020, "讚": 3021, "谷": 3022, "豁": 3023, "豂": 3024, "豆": 3025, "豈": 3026, "豉": 3027, "豎": 3028, "豐": 3029, "豚": 3030, "象": 3031, "豪": 3032, "豫": 3033, "豬": 3034, "豹": 3035, "貂": 3036, "貌": 3037, "貓": 3038, "貝": 3039, "負": 3040, "財": 3041, "貢": 3042, "貧": 3043, "貨": 3044, "販": 3045, "貪": 3046, "貫": 3047, "責": 3048, "貴": 3049, "貶": 3050, "買": 3051, "貸": 3052, "費": 3053, "貼": 3054, "貿": 3055, "賀": 3056, "賃": 3057, "資": 3058, "賈": 3059, "賊": 3060, "賒": 3061, "賓": 3062, "賜": 3063, "賞": 3064, "賢": 3065, "賣": 3066, "賤": 3067, "賦": 3068, "質": 3069, "賬": 3070, "賭": 3071, "賴": 3072, "賺": 3073, "購": 3074, "賽": 3075, "贅": 3076, "贈": 3077, "贊": 3078, "贏": 3079, "贼": 3080, "赤": 3081, "赫": 3082, "走": 3083, "赴": 3084, "起": 3085, "趁": 3086, "超": 3087, "越": 3088, "趌": 3089, "趕": 3090, "趙": 3091, "趣": 3092, "趨": 3093, "足": 3094, "趴": 3095, "趺": 3096, "趾": 3097, "跋": 3098, "跌": 3099, "跑": 3100, "跛": 3101, "距": 3102, "跟": 3103, "跡": 3104, "跣": 3105, "跨": 3106, "跪": 3107, "路": 3108, "跳": 3109, "踎": 3110, "踏": 3111, "踐": 3112, "踢": 3113, "踩": 3114, "踪": 3115, "踱": 3116, "踹": 3117, "蹄": 3118, "蹈": 3119, "蹋": 3120, "蹟": 3121, "蹤": 3122, "蹲": 3123, "蹺": 3124, "躁": 3125, "躉": 3126, "躍": 3127, "躝": 3128, "身": 3129, "躬": 3130, "躲": 3131, "車": 3132, "軌": 3133, "軍": 3134, "軒": 3135, "軟": 3136, "較": 3137, "載": 3138, "輊": 3139, "輋": 3140, "輔": 3141, "輕": 3142, "輘": 3143, "輝": 3144, "輟": 3145, "輩": 3146, "輪": 3147, "輯": 3148, "輷": 3149, "輸": 3150, "輻": 3151, "輾": 3152, "轄": 3153, "轆": 3154, "轉": 3155, "轍": 3156, "轡": 3157, "辛": 3158, "辜": 3159, "辣": 3160, "辦": 3161, "辨": 3162, "辭": 3163, "辯": 3164, "辰": 3165, "辱": 3166, "農": 3167, "迂": 3168, "迅": 3169, "迍": 3170, "迎": 3171, "近": 3172, "返": 3173, "迦": 3174, "迪": 3175, "迫": 3176, "述": 3177, "迴": 3178, "迷": 3179, "追": 3180, "迾": 3181, "退": 3182, "送": 3183, "逃": 3184, "逆": 3185, "透": 3186, "逐": 3187, "途": 3188, "逗": 3189, "這": 3190, "通": 3191, "逝": 3192, "逞": 3193, "速": 3194, "造": 3195, "逢": 3196, "連": 3197, "週": 3198, "進": 3199, "逸": 3200, "逹": 3201, "逼": 3202, "逾": 3203, "遂": 3204, "遇": 3205, "遊": 3206, "運": 3207, "遍": 3208, "過": 3209, "遏": 3210, "道": 3211, "達": 3212, "違": 3213, "遙": 3214, "遜": 3215, "遞": 3216, "遠": 3217, "遢": 3218, "遣": 3219, "適": 3220, "遭": 3221, "遮": 3222, "遲": 3223, "遴": 3224, "遵": 3225, "遷": 3226, "選": 3227, "遺": 3228, "避": 3229, "邀": 3230, "還": 3231, "邊": 3232, "邋": 3233, "邏": 3234, "那": 3235, "邦": 3236, "邨": 3237, "邪": 3238, "��": 3239, "邵": 3240, "邸": 3241, "郁": 3242, "郊": 3243, "郎": 3244, "郝": 3245, "部": 3246, "郭": 3247, "郵": 3248, "都": 3249, "鄂": 3250, "鄉": 3251, "鄙": 3252, "鄧": 3253, "鄭": 3254, "鄰": 3255, "酌": 3256, "配": 3257, "酒": 3258, "酥": 3259, "酪": 3260, "酬": 3261, "酮": 3262, "酱": 3263, "酷": 3264, "酸": 3265, "醇": 3266, "醉": 3267, "醋": 3268, "醒": 3269, "醜": 3270, "醫": 3271, "醬": 3272, "醺": 3273, "釀": 3274, "采": 3275, "釋": 3276, "里": 3277, "重": 3278, "野": 3279, "量": 3280, "金": 3281, "釗": 3282, "釘": 3283, "釜": 3284, "針": 3285, "釣": 3286, "釵": 3287, "鈍": 3288, "鈔": 3289, "鈕": 3290, "鈴": 3291, "鉛": 3292, "鉤": 3293, "鉸": 3294, "銀": 3295, "銅": 3296, "銘": 3297, "銳": 3298, "銷": 3299, "鋁": 3300, "鋒": 3301, "鋪": 3302, "鋼": 3303, "錄": 3304, "錐": 3305, "錢": 3306, "錦": 3307, "錫": 3308, "錯": 3309, "錶": 3310, "鍊": 3311, "鍋": 3312, "鍚": 3313, "鍵": 3314, "鍾": 3315, "鎖": 3316, "鎗": 3317, "鎭": 3318, "鎮": 3319, "鏈": 3320, "鏟": 3321, "鏡": 3322, "鏰": 3323, "鐘": 3324, "鐡": 3325, "鐵": 3326, "鐸": 3327, "鑄": 3328, "鑊": 3329, "鑑": 3330, "鑫": 3331, "鑲": 3332, "鑼": 3333, "鑽": 3334, "鑿": 3335, "長": 3336, "門": 3337, "閂": 3338, "閃": 3339, "閉": 3340, "開": 3341, "閏": 3342, "閒": 3343, "間": 3344, "閘": 3345, "閣": 3346, "閨": 3347, "閩": 3348, "閱": 3349, "閻": 3350, "闆": 3351, "闊": 3352, "闌": 3353, "闔": 3354, "闖": 3355, "關": 3356, "闢": 3357, "阜": 3358, "阪": 3359, "阱": 3360, "防": 3361, "阻": 3362, "阿": 3363, "陀": 3364, "陂": 3365, "附": 3366, "陌": 3367, "降": 3368, "限": 3369, "陞": 3370, "院": 3371, "陣": 3372, "除": 3373, "陪": 3374, "陰": 3375, "陳": 3376, "陶": 3377, "陷": 3378, "陸": 3379, "陽": 3380, "隆": 3381, "隊": 3382, "階": 3383, "隔": 3384, "隙": 3385, "際": 3386, "障": 3387, "隧": 3388, "隨": 3389, "險": 3390, "隱": 3391, "隴": 3392, "隸": 3393, "隻": 3394, "雀": 3395, "雁": 3396, "雄": 3397, "雅": 3398, "集": 3399, "雋": 3400, "雌": 3401, "雍": 3402, "雖": 3403, "雙": 3404, "雜": 3405, "雞": 3406, "離": 3407, "難": 3408, "雨": 3409, "雪": 3410, "雲": 3411, "零": 3412, "雷": 3413, "電": 3414, "需": 3415, "霄": 3416, "震": 3417, "霉": 3418, "霎": 3419, "霖": 3420, "霜": 3421, "霧": 3422, "露": 3423, "霸": 3424, "靈": 3425, "青": 3426, "靖": 3427, "靚": 3428, "靜": 3429, "非": 3430, "靠": 3431, "面": 3432, "革": 3433, "靴": 3434, "靶": 3435, "鞋": 3436, "鞍": 3437, "鞦": 3438, "鞭": 3439, "韆": 3440, "韌": 3441, "韓": 3442, "音": 3443, "韻": 3444, "響": 3445, "頁": 3446, "頂": 3447, "項": 3448, "順": 3449, "須": 3450, "頌": 3451, "預": 3452, "頒": 3453, "頓": 3454, "頗": 3455, "領": 3456, "頤": 3457, "頭": 3458, "頸": 3459, "頻": 3460, "題": 3461, "額": 3462, "顏": 3463, "顔": 3464, "願": 3465, "顛": 3466, "類": 3467, "顧": 3468, "顯": 3469, "顱": 3470, "風": 3471, "颱": 3472, "飄": 3473, "飛": 3474, "食": 3475, "飢": 3476, "飯": 3477, "飲": 3478, "飼": 3479, "飽": 3480, "飾": 3481, "餃": 3482, "餅": 3483, "餉": 3484, "養": 3485, "餋": 3486, "餐": 3487, "餒": 3488, "餓": 3489, "餘": 3490, "館": 3491, "餵": 3492, "餸": 3493, "餼": 3494, "饅": 3495, "饌": 3496, "饑": 3497, "饒": 3498, "饕": 3499, "首": 3500, "香": 3501, "馨": 3502, "馬": 3503, "馮": 3504, "馳": 3505, "駁": 3506, "駐": 3507, "駒": 3508, "駕": 3509, "駛": 3510, "駝": 3511, "駟": 3512, "駱": 3513, "駿": 3514, "騅": 3515, "騎": 3516, "騙": 3517, "騭": 3518, "騮": 3519, "騰": 3520, "騷": 3521, "騾": 3522, "驅": 3523, "驕": 3524, "驗": 3525, "驚": 3526, "驟": 3527, "驥": 3528, "骨": 3529, "骹": 3530, "髀": 3531, "髓": 3532, "體": 3533, "高": 3534, "髮": 3535, "髻": 3536, "鬆": 3537, "鬚": 3538, "鬠": 3539, "鬢": 3540, "鬥": 3541, "鬧": 3542, "鬱": 3543, "鬼": 3544, "魁": 3545, "魂": 3546, "魄": 3547, "魅": 3548, "魏": 3549, "魔": 3550, "魚": 3551, "魯": 3552, "魷": 3553, "鮑": 3554, "鮟": 3555, "鮫": 3556, "鮭": 3557, "鮮": 3558, "鯇": 3559, "鯉": 3560, "鯊": 3561, "鯖": 3562, "鯛": 3563, "鯪": 3564, "鰂": 3565, "鰭": 3566, "鰻": 3567, "鱇": 3568, "鱈": 3569, "鱔": 3570, "鱗": 3571, "鱲": 3572, "鱷": 3573, "鱸": 3574, "鲁": 3575, "鳥": 3576, "鳩": 3577, "鳳": 3578, "鳴": 3579, "鳶": 3580, "鴉": 3581, "鴛": 3582, "鴦": 3583, "鴨": 3584, "鴻": 3585, "鴿": 3586, "鵝": 3587, "鵪": 3588, "鵬": 3589, "鵲": 3590, "鶉": 3591, "鶴": 3592, "鷄": 3593, "鷯": 3594, "鷹": 3595, "鸞": 3596, "鹅": 3597, "鹹": 3598, "鹼": 3599, "鹽": 3600, "鹿": 3601, "麒": 3602, "麗": 3603, "麝": 3604, "麟": 3605, "麥": 3606, "麪": 3607, "麵": 3608, "麻": 3609, "麼": 3610, "黃": 3611, "黎": 3612, "黏": 3613, "黐": 3614, "黑": 3615, "默": 3616, "黚": 3617, "黛": 3618, "黜": 3619, "點": 3620, "黨": 3621, "黯": 3622, "鼆": 3623, "鼎": 3624, "鼓": 3625, "鼠": 3626, "鼻": 3627, "齊": 3628, "齋": 3629, "齒": 3630, "齡": 3631, "齪": 3632, "齷": 3633, "龍": 3634, "龐": 3635, "龜": 3636, "龢": 3637, "更": 3638, "來": 3639, "不": 3640, "年": 3641, "聯": 3642, "料": 3643, "利": 3644, "立": 3645, "行": 3646, ".": 3647, "a": 3648, "b": 3649, "": 3650, "|": 0, "[UNK]": 3651, "[PAD]": 3652}
|