File size: 10,384 Bytes
65eae50
2190b47
65eae50
 
c99fadb
 
563903f
c99fadb
65eae50
c99fadb
65eae50
c99fadb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65eae50
 
2190b47
65eae50
2190b47
65eae50
2190b47
65eae50
2190b47
65eae50
2190b47
65eae50
2190b47
65eae50
2190b47
 
 
65eae50
2190b47
65eae50
2190b47
 
 
 
 
c8e8569
 
2190b47
 
 
 
 
 
b77a803
c8e8569
 
2190b47
65eae50
 
 
9bac091
2190b47
65eae50
 
 
2190b47
 
 
 
 
 
 
 
 
 
 
 
65eae50
 
 
2190b47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65eae50
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
language: zh-HK
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- hf-asr-leaderboard
- robust-speech-event
datasets:
- common_voice
model-index:
- name: Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice
      type: common_voice
      args: zh-HK
    metrics:
    - name: Test CER
      type: cer
      value: 24.09
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 7
      type: mozilla-foundation/common_voice_7_0
      args: zh-HK
    metrics:
    - name: Test CER
      type: cer
      value: 23.1
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: zh-HK
    metrics:
    - name: Test CER
      type: cer
      value: 23.02
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: zh-HK
    metrics:
    - name: Test CER
      type: cer
      value: 56.86
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Test Data
      type: speech-recognition-community-v2/eval_data
      args: zh-HK
    metrics:
    - name: Test CER
      type: cer
      value: 55.76
---

# Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM

Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the `zh-HK` subset of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. A 5-gram Language model, trained on multiple [PyCantonese](https://pycantonese.org/data.html) corpora, was then subsequently added to this model.

This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](/static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fopen-to-the-community-robust-speech-recognition-challenge%2F13614%3C%2Fspan%3E) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH.

All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-lm-v2/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-lm-v2/tensorboard) logged via Tensorboard.

As for the N-gram language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by HuggingFace.

## Model

| Model                             | #params | Arch. | Training/Validation data (text) |
| --------------------------------- | ------- | ----- | ------------------------------- |
| `wav2vec2-xls-r-300m-zh-HK-lm-v2` | 300M    | XLS-R | `Common Voice zh-HK` Dataset    |

## Evaluation Results

The model achieves the following results on evaluation without a language model:

| Dataset                          | CER    |
| -------------------------------- | ------ |
| `Common Voice`                   | 31.73% |
| `Common Voice 7`                 | 23.11% |
| `Common Voice 8`                 | 23.02% |
| `Robust Speech Event - Dev Data` | 56.60% |

With the addition of the language model, it achieves the following results:

| Dataset                          | CER    |
| -------------------------------- | ------ |
| `Common Voice`                   | 24.09% |
| `Common Voice 7`                 | 23.10% |
| `Common Voice 8`                 | 23.02% |
| `Robust Speech Event - Dev Data` | 56.86% |

## Training procedure

The training process did not involve the addition of a language model. The following results were simply lifted from the original automatic speech recognition [model training](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-zh-HK-v2).

### Training hyperparameters

The following hyperparameters were used during training:

- `learning_rate`: 0.0001
- `train_batch_size`: 8
- `eval_batch_size`: 8
- `seed`: 42
- `gradient_accumulation_steps`: 4
- `total_train_batch_size`: 32
- `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `lr_scheduler_warmup_steps`: 2000
- `num_epochs`: 100.0
- `mixed_precision_training`: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |  Wer   |  Cer   |
| :-----------: | :---: | :---: | :-------------: | :----: | :----: |
|    69.8341    | 1.34  |  500  |     80.0722     |  1.0   |  1.0   |
|    6.6418     | 2.68  | 1000  |     6.6346      |  1.0   |  1.0   |
|    6.2419     | 4.02  | 1500  |     6.2909      |  1.0   |  1.0   |
|    6.0813     | 5.36  | 2000  |     6.1150      |  1.0   |  1.0   |
|    5.9677     |  6.7  | 2500  |     6.0301      | 1.1386 | 1.0028 |
|    5.9296     | 8.04  | 3000  |     5.8975      | 1.2113 | 1.0058 |
|    5.6434     | 9.38  | 3500  |     5.5404      | 2.1624 | 1.0171 |
|    5.1974     | 10.72 | 4000  |     4.5440      | 2.1702 | 0.9366 |
|    4.3601     | 12.06 | 4500  |     3.3839      | 2.2464 | 0.8998 |
|    3.9321     | 13.4  | 5000  |     2.8785      | 2.3097 | 0.8400 |
|    3.6462     | 14.74 | 5500  |     2.5108      | 1.9623 | 0.6663 |
|    3.5156     | 16.09 | 6000  |     2.2790      | 1.6479 | 0.5706 |
|     3.32      | 17.43 | 6500  |     2.1450      | 1.8337 | 0.6244 |
|    3.1918     | 18.77 | 7000  |     1.8536      | 1.9394 | 0.6017 |
|    3.1139     | 20.11 | 7500  |     1.7205      | 1.9112 | 0.5638 |
|    2.8995     | 21.45 | 8000  |     1.5478      | 1.0624 | 0.3250 |
|    2.7572     | 22.79 | 8500  |     1.4068      | 1.1412 | 0.3367 |
|    2.6881     | 24.13 | 9000  |     1.3312      | 2.0100 | 0.5683 |
|    2.5993     | 25.47 | 9500  |     1.2553      | 2.0039 | 0.6450 |
|    2.5304     | 26.81 | 10000 |     1.2422      | 2.0394 | 0.5789 |
|    2.4352     | 28.15 | 10500 |     1.1582      | 1.9970 | 0.5507 |
|    2.3795     | 29.49 | 11000 |     1.1160      | 1.8255 | 0.4844 |
|    2.3287     | 30.83 | 11500 |     1.0775      | 1.4123 | 0.3780 |
|    2.2622     | 32.17 | 12000 |     1.0704      | 1.7445 | 0.4894 |
|    2.2225     | 33.51 | 12500 |     1.0272      | 1.7237 | 0.5058 |
|    2.1843     | 34.85 | 13000 |     0.9756      | 1.8042 | 0.5028 |
|      2.1      | 36.19 | 13500 |     0.9527      | 1.8909 | 0.6055 |
|    2.0741     | 37.53 | 14000 |     0.9418      | 1.9026 | 0.5880 |
|    2.0179     | 38.87 | 14500 |     0.9363      | 1.7977 | 0.5246 |
|    2.0615     | 40.21 | 15000 |     0.9635      | 1.8112 | 0.5599 |
|    1.9448     | 41.55 | 15500 |     0.9249      | 1.7250 | 0.4914 |
|    1.8966     | 42.89 | 16000 |     0.9023      | 1.5829 | 0.4319 |
|    1.8662     | 44.24 | 16500 |     0.9002      | 1.4833 | 0.4230 |
|    1.8136     | 45.58 | 17000 |     0.9076      | 1.1828 | 0.2987 |
|    1.7908     | 46.92 | 17500 |     0.8774      | 1.5773 | 0.4258 |
|    1.7354     | 48.26 | 18000 |     0.8727      | 1.5037 | 0.4024 |
|    1.6739     | 49.6  | 18500 |     0.8636      | 1.1239 | 0.2789 |
|    1.6457     | 50.94 | 19000 |     0.8516      | 1.2269 | 0.3104 |
|    1.5847     | 52.28 | 19500 |     0.8399      | 1.3309 | 0.3360 |
|    1.5971     | 53.62 | 20000 |     0.8441      | 1.3153 | 0.3335 |
|     1.602     | 54.96 | 20500 |     0.8590      | 1.2932 | 0.3433 |
|    1.5063     | 56.3  | 21000 |     0.8334      | 1.1312 | 0.2875 |
|    1.4631     | 57.64 | 21500 |     0.8474      | 1.1698 | 0.2999 |
|    1.4997     | 58.98 | 22000 |     0.8638      | 1.4279 | 0.3854 |
|    1.4301     | 60.32 | 22500 |     0.8550      | 1.2737 | 0.3300 |
|    1.3798     | 61.66 | 23000 |     0.8266      | 1.1802 | 0.2934 |
|    1.3454     | 63.0  | 23500 |     0.8235      | 1.3816 | 0.3711 |
|    1.3678     | 64.34 | 24000 |     0.8550      | 1.6427 | 0.5035 |
|    1.3761     | 65.68 | 24500 |     0.8510      | 1.6709 | 0.4907 |
|    1.2668     | 67.02 | 25000 |     0.8515      | 1.5842 | 0.4505 |
|    1.2835     | 68.36 | 25500 |     0.8283      | 1.5353 | 0.4221 |
|    1.2961     | 69.7  | 26000 |     0.8339      | 1.5743 | 0.4369 |
|    1.2656     | 71.05 | 26500 |     0.8331      | 1.5331 | 0.4217 |
|    1.2556     | 72.39 | 27000 |     0.8242      | 1.4708 | 0.4109 |
|    1.2043     | 73.73 | 27500 |     0.8245      | 1.4469 | 0.4031 |
|    1.2722     | 75.07 | 28000 |     0.8202      | 1.4924 | 0.4096 |
|     1.202     | 76.41 | 28500 |     0.8290      | 1.3807 | 0.3719 |
|    1.1679     | 77.75 | 29000 |     0.8195      | 1.4097 | 0.3749 |
|    1.1967     | 79.09 | 29500 |     0.8059      | 1.2074 | 0.3077 |
|    1.1241     | 80.43 | 30000 |     0.8137      | 1.2451 | 0.3270 |
|    1.1414     | 81.77 | 30500 |     0.8117      | 1.2031 | 0.3121 |
|     1.132     | 83.11 | 31000 |     0.8234      | 1.4266 | 0.3901 |
|    1.0982     | 84.45 | 31500 |     0.8064      | 1.3712 | 0.3607 |
|    1.0797     | 85.79 | 32000 |     0.8167      | 1.3356 | 0.3562 |
|    1.0119     | 87.13 | 32500 |     0.8215      | 1.2754 | 0.3268 |
|    1.0216     | 88.47 | 33000 |     0.8163      | 1.2512 | 0.3184 |
|    1.0375     | 89.81 | 33500 |     0.8137      | 1.2685 | 0.3290 |
|    0.9794     | 91.15 | 34000 |     0.8220      | 1.2724 | 0.3255 |
|    1.0207     | 92.49 | 34500 |     0.8165      | 1.2906 | 0.3361 |
|    1.0169     | 93.83 | 35000 |     0.8153      | 1.2819 | 0.3305 |
|    1.0127     | 95.17 | 35500 |     0.8187      | 1.2832 | 0.3252 |
|    0.9978     | 96.51 | 36000 |     0.8111      | 1.2612 | 0.3210 |
|    0.9923     | 97.85 | 36500 |     0.8076      | 1.2278 | 0.3122 |
|    1.0451     | 99.2  | 37000 |     0.8086      | 1.2451 | 0.3156 |

## Disclaimer

Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.

## Authors

Wav2Vec2 XLS-R 300M Cantonese (zh-HK) LM was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud.

## Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0