File size: 9,302 Bytes
a663308
a2ccdd3
a663308
 
a2ccdd3
 
 
a663308
a2ccdd3
a663308
a2ccdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a663308
 
a2ccdd3
a663308
a2ccdd3
a663308
a2ccdd3
a663308
a2ccdd3
a663308
a2ccdd3
a663308
a2ccdd3
a663308
a2ccdd3
 
 
a663308
a2ccdd3
a663308
a2ccdd3
 
 
 
 
 
 
 
 
 
 
 
 
a663308
 
 
a2ccdd3
 
a663308
 
 
a2ccdd3
 
 
 
 
 
 
 
 
 
 
 
a663308
 
 
a2ccdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a663308
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language: ko
license: apache-2.0
tags:
  - automatic-speech-recognition
  - generated_from_trainer
  - robust-speech-event
datasets:
  - kresnik/zeroth_korean
model-index:
  - name: Wav2Vec2 XLS-R 300M Korean LM
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Zeroth Korean
          type: kresnik/zeroth_korean
          args: clean
        metrics:
          - name: Test WER
            type: wer
            value: 30.94
          - name: Test CER
            type: cer
            value: 7.97
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: ko
        metrics:
          - name: Test WER
            type: wer
            value: 68.34
          - name: Test CER
            type: cer
            value: 37.08
---

# Wav2Vec2 XLS-R 300M Korean LM

Wav2Vec2 XLS-R 300M Korean LM is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the [Zeroth Korean](https://huggingface.co/datasets/kresnik/zeroth_korean) dataset. A 5-gram Language model, trained on the Korean subset of [Open Subtitles](https://huggingface.co/datasets/open_subtitles), was then subsequently added to this model.

This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](/static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fopen-to-the-community-robust-speech-recognition-challenge%2F13614%3C%2Fspan%3E) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH.

All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean-lm/tree/main) tab, as well as the [Training metrics](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean-lm/tensorboard) logged via Tensorboard.

As for the N-gram language model training, we followed the [blog post tutorial](https://huggingface.co/blog/wav2vec2-with-ngram) provided by HuggingFace.

## Model

| Model                           | #params | Arch. | Training/Validation data (text) |
| ------------------------------- | ------- | ----- | ------------------------------- |
| `wav2vec2-xls-r-300m-korean-lm` | 300M    | XLS-R | `Zeroth Korean` Dataset         |

## Evaluation Results

The model achieves the following results on evaluation without a language model:

| Dataset                          | WER    | CER    |
| -------------------------------- | ------ | ------ |
| `Zeroth Korean`                  | 29.54% | 9.53%  |
| `Robust Speech Event - Dev Data` | 76.26% | 38.67% |

With the addition of the language model, it achieves the following results:

| Dataset                          | WER    | CER    |
| -------------------------------- | ------ | ------ |
| `Zeroth Korean`                  | 30.94% | 7.97%  |
| `Robust Speech Event - Dev Data` | 68.34% | 37.08% |

## Training procedure

The training process did not involve the addition of a language model. The following results were simply lifted from the original automatic speech recognition [model training](https://huggingface.co/w11wo/wav2vec2-xls-r-300m-korean).

### Training hyperparameters

The following hyperparameters were used during training:

- `learning_rate`: 7.5e-05
- `train_batch_size`: 8
- `eval_batch_size`: 8
- `seed`: 42
- `gradient_accumulation_steps`: 4
- `total_train_batch_size`: 32
- `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08`
- `lr_scheduler_type`: linear
- `lr_scheduler_warmup_steps`: 2000
- `num_epochs`: 50.0
- `mixed_precision_training`: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |  Wer   |  Cer   |
| :-----------: | :---: | :---: | :-------------: | :----: | :----: |
|    19.7138    | 0.72  |  500  |     19.6427     |  1.0   |  1.0   |
|    4.8039     | 1.44  | 1000  |     4.7842      |  1.0   |  1.0   |
|    4.5619     | 2.16  | 1500  |     4.5608      | 0.9992 | 0.9598 |
|     4.254     | 2.88  | 2000  |     4.2729      | 0.9955 | 0.9063 |
|    4.1905     |  3.6  | 2500  |     4.2257      | 0.9903 | 0.8758 |
|    4.0683     | 4.32  | 3000  |     3.9294      | 0.9937 | 0.7911 |
|     3.486     | 5.04  | 3500  |     2.7045      | 1.0012 | 0.5934 |
|     2.946     | 5.75  | 4000  |     1.9691      | 0.9425 | 0.4634 |
|     2.634     | 6.47  | 4500  |     1.5212      | 0.8807 | 0.3850 |
|    2.4066     | 7.19  | 5000  |     1.2551      | 0.8177 | 0.3601 |
|    2.2651     | 7.91  | 5500  |     1.0423      | 0.7650 | 0.3039 |
|    2.1828     | 8.63  | 6000  |     0.9599      | 0.7273 | 0.3106 |
|    2.1023     | 9.35  | 6500  |     0.9482      | 0.7161 | 0.3063 |
|    2.0536     | 10.07 | 7000  |     0.8242      | 0.6767 | 0.2860 |
|    1.9803     | 10.79 | 7500  |     0.7643      | 0.6563 | 0.2637 |
|    1.9468     | 11.51 | 8000  |     0.7319      | 0.6441 | 0.2505 |
|    1.9178     | 12.23 | 8500  |     0.6937      | 0.6320 | 0.2489 |
|    1.8515     | 12.95 | 9000  |     0.6443      | 0.6053 | 0.2196 |
|    1.8083     | 13.67 | 9500  |     0.6286      | 0.6122 | 0.2148 |
|     1.819     | 14.39 | 10000 |     0.6015      | 0.5986 | 0.2074 |
|    1.7684     | 15.11 | 10500 |     0.5682      | 0.5741 | 0.1982 |
|    1.7195     | 15.83 | 11000 |     0.5385      | 0.5592 | 0.2007 |
|    1.7044     | 16.55 | 11500 |     0.5362      | 0.5524 | 0.2097 |
|    1.6879     | 17.27 | 12000 |     0.5119      | 0.5489 | 0.2083 |
|     1.656     | 17.98 | 12500 |     0.4990      | 0.5362 | 0.1968 |
|    1.6122     | 18.7  | 13000 |     0.4561      | 0.5092 | 0.1900 |
|    1.5919     | 19.42 | 13500 |     0.4778      | 0.5225 | 0.1975 |
|    1.5896     | 20.14 | 14000 |     0.4563      | 0.5098 | 0.1859 |
|    1.5589     | 20.86 | 14500 |     0.4362      | 0.4940 | 0.1725 |
|    1.5353     | 21.58 | 15000 |     0.4140      | 0.4826 | 0.1580 |
|    1.5441     | 22.3  | 15500 |     0.4031      | 0.4742 | 0.1550 |
|    1.5116     | 23.02 | 16000 |     0.3916      | 0.4748 | 0.1545 |
|    1.4731     | 23.74 | 16500 |     0.3841      | 0.4810 | 0.1542 |
|    1.4647     | 24.46 | 17000 |     0.3752      | 0.4524 | 0.1475 |
|    1.4328     | 25.18 | 17500 |     0.3587      | 0.4476 | 0.1461 |
|    1.4129     | 25.9  | 18000 |     0.3429      | 0.4242 | 0.1366 |
|    1.4062     | 26.62 | 18500 |     0.3450      | 0.4251 | 0.1355 |
|    1.3928     | 27.34 | 19000 |     0.3297      | 0.4145 | 0.1322 |
|    1.3906     | 28.06 | 19500 |     0.3210      | 0.4185 | 0.1336 |
|     1.358     | 28.78 | 20000 |     0.3131      | 0.3970 | 0.1275 |
|    1.3445     | 29.5  | 20500 |     0.3069      | 0.3920 | 0.1276 |
|    1.3159     | 30.22 | 21000 |     0.3035      | 0.3961 | 0.1255 |
|    1.3044     | 30.93 | 21500 |     0.2952      | 0.3854 | 0.1242 |
|    1.3034     | 31.65 | 22000 |     0.2966      | 0.3772 | 0.1227 |
|    1.2963     | 32.37 | 22500 |     0.2844      | 0.3706 | 0.1208 |
|    1.2765     | 33.09 | 23000 |     0.2841      | 0.3567 | 0.1173 |
|    1.2438     | 33.81 | 23500 |     0.2734      | 0.3552 | 0.1137 |
|    1.2487     | 34.53 | 24000 |     0.2703      | 0.3502 | 0.1118 |
|    1.2249     | 35.25 | 24500 |     0.2650      | 0.3484 | 0.1142 |
|    1.2229     | 35.97 | 25000 |     0.2584      | 0.3374 | 0.1097 |
|    1.2374     | 36.69 | 25500 |     0.2568      | 0.3337 | 0.1095 |
|    1.2153     | 37.41 | 26000 |     0.2494      | 0.3327 | 0.1071 |
|    1.1925     | 38.13 | 26500 |     0.2518      | 0.3366 | 0.1077 |
|    1.1908     | 38.85 | 27000 |     0.2437      | 0.3272 | 0.1057 |
|    1.1858     | 39.57 | 27500 |     0.2396      | 0.3265 | 0.1044 |
|    1.1808     | 40.29 | 28000 |     0.2373      | 0.3156 | 0.1028 |
|    1.1842     | 41.01 | 28500 |     0.2356      | 0.3152 | 0.1026 |
|    1.1668     | 41.73 | 29000 |     0.2319      | 0.3188 | 0.1025 |
|    1.1448     | 42.45 | 29500 |     0.2293      | 0.3099 | 0.0995 |
|    1.1327     | 43.17 | 30000 |     0.2265      | 0.3047 | 0.0979 |
|    1.1307     | 43.88 | 30500 |     0.2222      | 0.3078 | 0.0989 |
|    1.1419     | 44.6  | 31000 |     0.2215      | 0.3038 | 0.0981 |
|    1.1231     | 45.32 | 31500 |     0.2193      | 0.3013 | 0.0972 |
|     1.139     | 46.04 | 32000 |     0.2162      | 0.3007 | 0.0968 |
|    1.1114     | 46.76 | 32500 |     0.2122      | 0.2982 | 0.0960 |
|     1.111     | 47.48 | 33000 |     0.2125      | 0.2946 | 0.0948 |
|    1.0982     | 48.2  | 33500 |     0.2099      | 0.2957 | 0.0953 |
|     1.109     | 48.92 | 34000 |     0.2092      | 0.2955 | 0.0955 |
|    1.0905     | 49.64 | 34500 |     0.2088      | 0.2954 | 0.0953 |

## Disclaimer

Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.

## Authors

Wav2Vec2 XLS-R 300M Korean LM was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud.

## Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.10.3