update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: whisper-base
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# whisper-base
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2522
|
20 |
+
- Wer: 23.1797
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 1e-05
|
40 |
+
- train_batch_size: 64
|
41 |
+
- eval_batch_size: 64
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 500
|
46 |
+
- training_steps: 10000
|
47 |
+
- mixed_precision_training: Native AMP
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
|
53 |
+
| 2.1114 | 0.0 | 1 | 2.3698 | 75.1864 |
|
54 |
+
| 0.3272 | 0.29 | 1000 | 0.4182 | 37.7505 |
|
55 |
+
| 0.251 | 0.58 | 2000 | 0.3408 | 30.9679 |
|
56 |
+
| 0.2207 | 0.88 | 3000 | 0.3059 | 28.3058 |
|
57 |
+
| 0.1779 | 1.17 | 4000 | 0.2890 | 26.7555 |
|
58 |
+
| 0.1691 | 1.46 | 5000 | 0.2742 | 25.2099 |
|
59 |
+
| 0.1622 | 1.75 | 6000 | 0.2645 | 24.6840 |
|
60 |
+
| 0.1397 | 2.04 | 7000 | 0.2587 | 23.8812 |
|
61 |
+
| 0.1394 | 2.34 | 8000 | 0.2562 | 23.6586 |
|
62 |
+
| 0.1361 | 2.63 | 9000 | 0.2536 | 23.4633 |
|
63 |
+
| 0.1356 | 2.92 | 10000 | 0.2522 | 23.1797 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.27.4
|
69 |
+
- Pytorch 2.0.0
|
70 |
+
- Datasets 2.11.0
|
71 |
+
- Tokenizers 0.13.3
|