--- license: apache-2.0 datasets: - thennal/IMaSC - vrclc/openslr63 - vrclc/festvox-iiith-ml - smcproject/MSC language: - ml - en base_model: openai/whisper-medium model-index: - name: vrclc/Whisper-med-ml - Bajiyo Baiju results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 13 Malayalam type: mozilla-foundation/common_voice_13_0 config: ml split: test args: ml metrics: - type: wer value: 63.64 name: WER - type: cer value: 13.61 name: CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 16 Malayalam type: mozilla-foundation/common_voice_16_1 config: ml split: test args: ml metrics: - type: wer value: 64.63 name: WER - type: cer value: 14.07 name: CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: OpenSLR Malayalam -Test type: vrclc/openslr63 config: ml split: test args: ml metrics: - type: wer value: 14.65 name: WER - type: cer value: 2.59 name: CER library_name: transformers --- # Whisper-med-ml This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the datasets: [IMASC](https://huggingface.co/datasets/thennal/IMaSC), [MSC](https://huggingface.co/datasets/smcproject/MSC), [OpenSLR Malayalam Train split](https://huggingface.co/datasets/vrclc/openslr63), [Festvox Malayalam](https://huggingface.co/datasets/vrclc/openslr63) . It achieves the following results on the validation set : [OpenSLR-Test](https://huggingface.co/vrclc/openslr63) - Loss: 0.0318 - Wer: 14.7300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0599 | 0.4 | 1000 | 0.0910 | 42.4981 | | 0.0341 | 0.79 | 2000 | 0.0584 | 30.0572 | | 0.0183 | 1.19 | 3000 | 0.0439 | 23.1650 | | 0.0147 | 1.58 | 4000 | 0.0363 | 18.7360 | | 0.0107 | 1.98 | 5000 | 0.0322 | 16.4220 | | 0.0032 | 2.37 | 6000 | 0.0318 | 14.7300 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1