asahi417 commited on
Commit
8c1836a
·
1 Parent(s): c4dc812

commit files to HF hub

Browse files
README.md CHANGED
@@ -31,33 +31,33 @@ model-index:
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
- value: 0.0
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
- value: 0.0
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
- value: 0.0
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
- value: 72.58
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
- value: 56.32
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
- value: 0.0
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
- value: 0.0
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qa`
56
- This model is fine-tuned version of [vocabtrimmer/mt5-small-trimmed-fr-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000) for question answering task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
- - **Language model:** [vocabtrimmer/mt5-small-trimmed-fr-15000](https://huggingface.co/vocabtrimmer/mt5-small-trimmed-fr-15000)
61
  - **Language:** fr
62
  - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
@@ -93,16 +93,16 @@ output = pipe("question: En quelle année a-t-on trouvé trace d'un haut fournea
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
- | AnswerExactMatch | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
97
- | AnswerF1Score | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
98
- | BERTScore | 72.58 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
99
- | Bleu_1 | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
100
- | Bleu_2 | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
101
- | Bleu_3 | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
102
- | Bleu_4 | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
103
- | METEOR | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
104
- | MoverScore | 56.32 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
105
- | ROUGE_L | 0 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
106
 
107
 
108
 
@@ -114,12 +114,12 @@ The following hyperparameters were used during fine-tuning:
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
- - model: vocabtrimmer/mt5-small-trimmed-fr-15000
118
  - max_length: 512
119
  - max_length_output: 32
120
- - epoch: 9
121
  - batch: 32
122
- - lr: 0.0001
123
  - fp16: False
124
  - random_seed: 1
125
  - gradient_accumulation_steps: 4
 
31
  metrics:
32
  - name: BLEU4 (Question Answering)
33
  type: bleu4_question_answering
34
+ value: 17.12
35
  - name: ROUGE-L (Question Answering)
36
  type: rouge_l_question_answering
37
+ value: 27.44
38
  - name: METEOR (Question Answering)
39
  type: meteor_question_answering
40
+ value: 21.75
41
  - name: BERTScore (Question Answering)
42
  type: bertscore_question_answering
43
+ value: 88.56
44
  - name: MoverScore (Question Answering)
45
  type: moverscore_question_answering
46
+ value: 70.15
47
  - name: AnswerF1Score (Question Answering)
48
  type: answer_f1_score__question_answering
49
+ value: 43.25
50
  - name: AnswerExactMatch (Question Answering)
51
  type: answer_exact_match_question_answering
52
+ value: 26.88
53
  ---
54
 
55
  # Model Card of `vocabtrimmer/mt5-small-trimmed-fr-15000-frquad-qa`
56
+ This model is fine-tuned version of [ckpts/mt5-small-trimmed-fr-15000](https://huggingface.co/ckpts/mt5-small-trimmed-fr-15000) for question answering task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
57
 
58
 
59
  ### Overview
60
+ - **Language model:** [ckpts/mt5-small-trimmed-fr-15000](https://huggingface.co/ckpts/mt5-small-trimmed-fr-15000)
61
  - **Language:** fr
62
  - **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default)
63
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
 
93
 
94
  | | Score | Type | Dataset |
95
  |:-----------------|--------:|:--------|:-----------------------------------------------------------------|
96
+ | AnswerExactMatch | 26.88 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
97
+ | AnswerF1Score | 43.25 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
98
+ | BERTScore | 88.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
99
+ | Bleu_1 | 25.9 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
100
+ | Bleu_2 | 22.1 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
101
+ | Bleu_3 | 19.45 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
102
+ | Bleu_4 | 17.12 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
103
+ | METEOR | 21.75 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
104
+ | MoverScore | 70.15 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
105
+ | ROUGE_L | 27.44 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
106
 
107
 
108
 
 
114
  - input_types: ['paragraph_question']
115
  - output_types: ['answer']
116
  - prefix_types: None
117
+ - model: ckpts/mt5-small-trimmed-fr-15000
118
  - max_length: 512
119
  - max_length_output: 32
120
+ - epoch: 26
121
  - batch: 32
122
+ - lr: 0.001
123
  - fp16: False
124
  - random_seed: 1
125
  - gradient_accumulation_steps: 4
eval/metric.first.answer.paragraph_question.answer.lmqg_qg_frquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 6.378918723349514e-21, "Bleu_2": 1.0512643848189357e-14, "Bleu_3": 1.241748314151487e-12, "Bleu_4": 1.3495668217383437e-11, "METEOR": 0.0, "ROUGE_L": 0.0, "BERTScore": 0.7041046967545298, "MoverScore": 0.5515625251694646, "AnswerF1Score": 0.0, "AnswerExactMatch": 0.0}, "test": {"Bleu_1": 1.523754026139619e-20, "Bleu_2": 4.648490478022164e-19, "Bleu_3": 1.6626776483347877e-18, "Bleu_4": 3.73950065656701e-18, "METEOR": 0.0, "ROUGE_L": 0.0, "BERTScore": 0.7258102194951798, "MoverScore": 0.5631850033525873, "AnswerF1Score": 0.0, "AnswerExactMatch": 0.0}}
 
1
+ {"validation": {"Bleu_1": 0.2664155005381952, "Bleu_2": 0.22753591111355484, "Bleu_3": 0.1993707280269415, "Bleu_4": 0.17659101079670417, "METEOR": 0.20698995597958483, "ROUGE_L": 0.2601730968698664, "BERTScore": 0.8857114457687739, "MoverScore": 0.6889768436401756, "AnswerF1Score": 42.29288054020749, "AnswerExactMatch": 22.45922208281054}, "test": {"Bleu_1": 0.25904334828099707, "Bleu_2": 0.22102083058968738, "Bleu_3": 0.19446005005164355, "Bleu_4": 0.17115253649023965, "METEOR": 0.2174977961913064, "ROUGE_L": 0.2743645114245147, "BERTScore": 0.885604128110663, "MoverScore": 0.7015155928389406, "AnswerF1Score": 43.253076879987645, "AnswerExactMatch": 26.882057716436638}}
eval/samples.test.hyp.paragraph_question.answer.lmqg_qg_frquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph_question.answer.lmqg_qg_frquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff