--- library_name: transformers language: - multilingual license: apache-2.0 base_model: openai/whisper-large-v3 tags: - whisper-event - generated_from_trainer metrics: - bleu model-index: - name: Fauna-v3.6 - Rootflo results: [] --- # Fauna-v3.6 - Rootflo This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1129 - Bleu: 19.6035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 96 - eval_batch_size: 96 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 768 - total_eval_batch_size: 384 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3935 | 0.9961 | 129 | 0.1285 | 16.5443 | | 0.2695 | 2.0 | 259 | 0.1173 | 18.5659 | | 0.2469 | 2.9961 | 388 | 0.1135 | 11.4429 | | 0.2285 | 3.9846 | 516 | 0.1129 | 19.6035 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.3