Create notebook
Browse files
notebook
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#[My model deployed on Hugging Face](https://huggingface.co/vividsd/gpt2-enrondataset)
|
2 |
+
Viviane da Silva Dilly
|
3 |
+
|
4 |
+
In this notebook, I did part 2 and 3 of fine tuning a LLM (I chose GPT2) on the enron dataset from kaggle.
|
5 |
+
|
6 |
+
* Fine-tune a Language Model on the Enron dataset
|
7 |
+
* Create a Gradio Interface that answers questions related to the case deploying it in a Huggingface Space
|
8 |
+
|
9 |
+
As I mentioned below on my code, after many many days of trying to use the whole data set and having my code crashing after long hours of waiting, I decided to use a sample.
|
10 |
+
|
11 |
+
# I'll start by installing and importing all I need
|
12 |
+
|
13 |
+
!pip install transformers pandas torch
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import pandas as pd
|
17 |
+
|
18 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, TextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
19 |
+
from google.colab import drive
|
20 |
+
drive.mount('/content/drive')
|
21 |
+
|
22 |
+
#Reading my data set
|
23 |
+
enron_data = pd.read_csv('/content/drive/MyDrive/Mestrado/emails.csv')
|
24 |
+
|
25 |
+
# I tried to take the whole dataset several times, but due to memory problems, I decided to go for a sample of 10k
|
26 |
+
sample_size = 10000
|
27 |
+
sample_enron_data = enron_data.sample(sample_size)
|
28 |
+
sample_enron_data.to_csv("sample_enron_dataset.csv", index=False)
|
29 |
+
|
30 |
+
# now that I have a sample of my data set running locally, I'll call it to make sure it's all good
|
31 |
+
sample_enron_data.head()
|
32 |
+
|
33 |
+
|
34 |
+
len(sample_enron_data)
|
35 |
+
|
36 |
+
# Now I'll concatenate all email messages into a single string
|
37 |
+
text = "\n".join(sample_enron_data['message'])
|
38 |
+
|
39 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
40 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
41 |
+
input_ids = tokenizer(text, return_tensors='pt', max_length=512, truncation=True, padding=True)['input_ids']
|
42 |
+
|
43 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, AdamW, get_linear_schedule_with_warmup
|
44 |
+
from torch.utils.data import Dataset, DataLoader
|
45 |
+
from tqdm import tqdm
|
46 |
+
|
47 |
+
# Now I'll try to define a custom dataset
|
48 |
+
class EmailDataset(Dataset):
|
49 |
+
def __init__(self, input_ids):
|
50 |
+
self.input_ids = input_ids
|
51 |
+
|
52 |
+
def __len__(self):
|
53 |
+
return len(self.input_ids)
|
54 |
+
|
55 |
+
def __getitem__(self, idx):
|
56 |
+
return self.input_ids[idx]
|
57 |
+
|
58 |
+
dataset = EmailDataset(input_ids)
|
59 |
+
|
60 |
+
# I'll define the GPT-2 model
|
61 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
62 |
+
|
63 |
+
#Since I tried many times and it crashed, following some tutorials I saw that I could try to define this optimizer
|
64 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
65 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=len(dataset))
|
66 |
+
|
67 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
68 |
+
model.to(device)
|
69 |
+
|
70 |
+
# Now I'll train it
|
71 |
+
model.train()
|
72 |
+
|
73 |
+
train_dataloader = DataLoader(dataset, batch_size=8, shuffle=True)
|
74 |
+
|
75 |
+
num_epochs = 3
|
76 |
+
for epoch in range(num_epochs):
|
77 |
+
epoch_loss = 0
|
78 |
+
steps = 0
|
79 |
+
|
80 |
+
for batch in tqdm(train_dataloader, desc=f"Epoch {epoch + 1}"):
|
81 |
+
batch = batch.to(device)
|
82 |
+
|
83 |
+
outputs = model(input_ids=batch, labels=batch)
|
84 |
+
loss = outputs.loss
|
85 |
+
|
86 |
+
optimizer.zero_grad()
|
87 |
+
loss.backward()
|
88 |
+
optimizer.step()
|
89 |
+
scheduler.step()
|
90 |
+
|
91 |
+
epoch_loss += loss.item()
|
92 |
+
steps += 1
|
93 |
+
|
94 |
+
print(f"Epoch {epoch + 1} - Average Loss: {epoch_loss / steps}")
|
95 |
+
|
96 |
+
# and then I'll save the fine-tuned model
|
97 |
+
model.save_pretrained("./fine_tuned_model")
|
98 |
+
|
99 |
+
|
100 |
+
### PART 3: Create a Gradio Interface that answers questions related to the case
|
101 |
+
Now, having fine tuned the model, I proceed to creating the gradio interface
|
102 |
+
|
103 |
+
# In order to make the gradio interface, first I need to install it and then import
|
104 |
+
!pip install gradio
|
105 |
+
import gradio as gr
|
106 |
+
|
107 |
+
# First I'll load the fine tuned model
|
108 |
+
model_fine_tuned = GPT2LMHeadModel.from_pretrained("./fine_tuned_model")
|
109 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
110 |
+
|
111 |
+
# Then I'll create the function to generate the response
|
112 |
+
def generate_response(question):
|
113 |
+
input_ids = tokenizer.encode(question, return_tensors="pt")
|
114 |
+
output = model_fine_tuned.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.7)
|
115 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
116 |
+
return response
|
117 |
+
|
118 |
+
# Finally I'll create Gradio interface
|
119 |
+
gr.Interface(generate_response, "textbox", "textbox", title="Ask Enron Dataset", description="Enter a question about the case").launch()
|
120 |
+
|
121 |
+
|
122 |
+
### Part 4: Deploy the Gradio Interface in a HuggingFace Space
|
123 |
+
(you find the link also on the top of this notebook)
|
124 |
+
|
125 |
+
#[My model deployed on Hugging Face](https://huggingface.co/vividsd/gpt2-enrondataset)
|