--- tags: - hojjatk/mnist-dataset - handwriting-recognition - classification - deep-learning metrics: accuracy: '0.98' precision: '0.98' recall: '0.98' dataset: name: hojjatk/mnist-dataset type: image license: mit downloads: count: 0 --- # Handwriting Recognition Model This is a trained model for handwriting recognition using **hojjatk/mnist-dataset** dataset. ## Usage ```python model = torch.load("mnsit_digit_nn") model.eval() ``` ## Training Param: epochs = 300 batch_size = 64 learning_rate = 0.001 ## Model Architectue: ['(fc1): Linear(in_features=784, out_features=128, bias=True)', '(fc2): Linear(in_features=128, out_features=64, bias=True)', '(fc3): Linear(in_features=64, out_features=10, bias=True)', '(relu): ReLU()', '(dropout): Dropout(p=0.2, inplace=False)'] ## Evaluation Results - Accuracy: 0.98 - Precision: 0.98 - Recall: 0.98