--- license: bsd-3-clause tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: [] --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4400 - Accuracy: 0.91 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6505 | 1.0 | 113 | 0.6775 | 0.77 | | 0.2847 | 2.0 | 226 | 0.6989 | 0.78 | | 0.4559 | 3.0 | 339 | 0.5821 | 0.85 | | 0.1643 | 4.0 | 452 | 0.6462 | 0.85 | | 0.0083 | 5.0 | 565 | 0.6071 | 0.87 | | 0.0281 | 6.0 | 678 | 0.5648 | 0.87 | | 0.0001 | 7.0 | 791 | 0.4394 | 0.92 | | 0.0002 | 8.0 | 904 | 0.4378 | 0.9 | | 0.1345 | 9.0 | 1017 | 0.4299 | 0.9 | | 0.0002 | 10.0 | 1130 | 0.4400 | 0.91 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3