File size: 3,963 Bytes
c30a4c8
871c7d0
 
 
c30a4c8
871c7d0
 
 
 
 
 
c30a4c8
871c7d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---

language:
- en
- zh
license: mit
datasets:
- wenbopan/Chinese-dpo-pairs
- Intel/orca_dpo_pairs
- argilla/ultrafeedback-binarized-preferences-cleaned
- jondurbin/truthy-dpo-v0.1
pipeline_tag: text-generation
---


# Faro-Yi-9B-DPO

This is the DPO version of [wenbopan/Faro-Yi-9B](https://huggingface.co/wenbopan/Faro-Yi-9B). Compared to Faro-Yi-9B and [Yi-9B-200K](https://huggingface.co/01-ai/Yi-9B-200K), the DPO model excels at many tasks, surpassing the original Yi-9B-200K by a large margin. On the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), it ranks **#2** among all 9B models, **#1** among all Yi-9B variants.

| **Metric**              | **MMLU**  | **GSM8K** | **hellaswag** | **truthfulqa** | **ai2_arc** | **winogrande** | **CMMLU** |

| ----------------------- | --------- | --------- | ------------- | -------------- | ----------- | -------------- | --------- |

| **Yi-9B-200K**          | 65.73     | 50.49     | 56.72         | 33.80          | 69.25       | 71.67          | 71.97     |

| **Faro-Yi-9B**          | 68.80     | 63.08     | 57.28         | 40.86          | 72.58       | 71.11          | 73.28     |

| **Faro-Yi-9B-DPO**      | **69.98** | **66.11** | **59.04**     | **48.01**      | **75.68**   | **73.40**      | **75.23** |



Faro-Yi-9B-DPO's responses are also favored by GPT-4 Judge in MT-Bench



![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F62cd3a3691d27e60db0698b0%2FArlnloL4aPfiiD6kUqaSH.png%3C%2Fspan%3E)



## How to Use



Faro-Yi-9B-DPO uses the chatml template and performs well in both short and long contexts. For longer inputs under **24GB of VRAM**, I recommend to use vLLM to have a max prompt of 32K. Setting `kv_cache_dtype="fp8_e5m2"` allows for 48K input length. 4bit-AWQ quantization on top of that can boost input length to 160K, albeit with some performance impact. Adjust `max_model_len` arg in vLLM or `config.json` to avoid OOM.





```python

import io

import requests

from PyPDF2 import PdfReader

from vllm import LLM, SamplingParams



llm = LLM(model="wenbopan/Faro-Yi-9B-DPO", kv_cache_dtype="fp8_e5m2", max_model_len=100000)



pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content)

document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages



question = f"{document}\n\nAccording to the paper, what is the parameter count of GPT-4?"

messages = [ {"role": "user", "content": question} ] # 83K tokens

prompt = llm.get_tokenizer().apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500))

print(output[0].outputs[0].text)

# Yi-9B-200K:      175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ...

# Faro-Yi-9B: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ...

```





<details> <summary>Or With Transformers</summary>



```python

from transformers import AutoModelForCausalLM, AutoTokenizer



model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-9B-DPO', device_map="cuda")

tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-9B-DPO')

messages = [

    {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."},

    {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."}

]



input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)

generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.5)

response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Aye, matey! The Pythagorean theorem is a nautical rule that helps us find the length of the third side of a triangle. ...

```



</details>