victorivus commited on
Commit
029e528
·
1 Parent(s): 16e5780

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.18 +/- 0.43
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8059a2fd0ad3dd8eea24c80fd904b031da5011795112d805ceba420239c889e
3
+ size 108075
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe9eda2f6d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fe9eda34740>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1683903579597408460,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoKvFPv/TAL3V/gk/oKvFPv/TAL3V/gk/oKvFPv/TAL3V/gk/oKvFPv/TAL3V/gk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKxjOv6LI1j9tx1K/PDymPnVvpb72WXS+FANzvZczwD9v54U/r0wJv9scoT/NUZC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgq8U+/9MAvdX+CT/etWk8RCfkOnqXFTygq8U+/9MAvdX+CT/etWk8RCfkOnqXFTygq8U+/9MAvdX+CT/etWk8RCfkOnqXFTygq8U+/9MAvdX+CT/etWk8RCfkOnqXFTyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.38607502 -0.03145218 0.5390447 ]\n [ 0.38607502 -0.03145218 0.5390447 ]\n [ 0.38607502 -0.03145218 0.5390447 ]\n [ 0.38607502 -0.03145218 0.5390447 ]]",
38
+ "desired_goal": "[[-1.6101125 1.6779978 -0.8233555 ]\n [ 0.3246783 -0.32311597 -0.23862442]\n [-0.05932911 1.5015744 1.0461253 ]\n [-0.53632635 1.2586931 -1.1274964 ]]",
39
+ "observation": "[[ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]\n [ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]\n [ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]\n [ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUbm8vaM6hz1yVrs9MX2YvfQtor0Bhi0+IDDJveFf9b287ak9ZZEEvsVsjz0ZUE4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[-0.09215034 0.06602981 0.09147348]\n [-0.07445753 -0.07918921 0.1694565 ]\n [-0.09823632 -0.11981178 0.08297297]\n [-0.12946089 0.07003168 0.20147742]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFQK5xJEH77+UhpRSlIwBbJRLMowBdJRHQKg5aukDZDl1fZQoaAZoCWgPQwjyJyob1tTjv5SGlFKUaBVLMmgWR0CoORU5EMLGdX2UKGgGaAloD0MI0el5NxaU8r+UhpRSlGgVSzJoFkdAqDi6iqQzUXV9lChoBmgJaA9DCK4pkNlZNPO/lIaUUpRoFUsyaBZHQKg4ZklNUOx1fZQoaAZoCWgPQwipoQ3ABkTtv5SGlFKUaBVLMmgWR0CoO14zBRAKdX2UKGgGaAloD0MIjPLMy2F35r+UhpRSlGgVSzJoFkdAqDsIzLwF1XV9lChoBmgJaA9DCPEtrBvvTvK/lIaUUpRoFUsyaBZHQKg6rn5i3G51fZQoaAZoCWgPQwh+dOrKZ3nxv5SGlFKUaBVLMmgWR0CoOlrJjlPrdX2UKGgGaAloD0MIcayL22iA4r+UhpRSlGgVSzJoFkdAqD1d9Ujs2XV9lChoBmgJaA9DCG2MnfASHO2/lIaUUpRoFUsyaBZHQKg9CHdGiHt1fZQoaAZoCWgPQwh55XrbTAXkv5SGlFKUaBVLMmgWR0CoPK4WtU4rdX2UKGgGaAloD0MIPPiJA+h34L+UhpRSlGgVSzJoFkdAqDxaScLBsXV9lChoBmgJaA9DCODVcmcmmPi/lIaUUpRoFUsyaBZHQKg/mqLCN0h1fZQoaAZoCWgPQwhn0qbqHln5v5SGlFKUaBVLMmgWR0CoP0WPT5O8dX2UKGgGaAloD0MIbF9AL9x587+UhpRSlGgVSzJoFkdAqD7tB+nZTXV9lChoBmgJaA9DCJepSfCGNP6/lIaUUpRoFUsyaBZHQKg+mU8mrsB1fZQoaAZoCWgPQwjv4v24/fLxv5SGlFKUaBVLMmgWR0CoQOEvK2a2dX2UKGgGaAloD0MInbgcr0D04r+UhpRSlGgVSzJoFkdAqECKpeeFtnV9lChoBmgJaA9DCDCca5ih8ea/lIaUUpRoFUsyaBZHQKhAL0CA+ZB1fZQoaAZoCWgPQwhgIAiQoePkv5SGlFKUaBVLMmgWR0CoP9o2fkFOdX2UKGgGaAloD0MIYviImBJJ4b+UhpRSlGgVSzJoFkdAqEIMpNKywHV9lChoBmgJaA9DCIDW/PhLC/C/lIaUUpRoFUsyaBZHQKhBtg0CRwJ1fZQoaAZoCWgPQwiRmnYxzbTyv5SGlFKUaBVLMmgWR0CoQVqIBRyfdX2UKGgGaAloD0MIzse1oWKc7L+UhpRSlGgVSzJoFkdAqEEFkz41xnV9lChoBmgJaA9DCHdNSGsMOuW/lIaUUpRoFUsyaBZHQKhDLJBgNPR1fZQoaAZoCWgPQwgmUwWjkjrlv5SGlFKUaBVLMmgWR0CoQtXYUWVNdX2UKGgGaAloD0MInKVkOQmlz7+UhpRSlGgVSzJoFkdAqEJ6aoddV3V9lChoBmgJaA9DCG5qoPmcu+y/lIaUUpRoFUsyaBZHQKhCJV/c32p1fZQoaAZoCWgPQwhNgjekUQHvv5SGlFKUaBVLMmgWR0CoREMh5gPVdX2UKGgGaAloD0MI/pyC/Gxk7L+UhpRSlGgVSzJoFkdAqEPsbo8p1HV9lChoBmgJaA9DCPoMqDejpvC/lIaUUpRoFUsyaBZHQKhDkZof0Vd1fZQoaAZoCWgPQwhDOjyE8dPyv5SGlFKUaBVLMmgWR0CoQz05MlC1dX2UKGgGaAloD0MItyQH7Gry6b+UhpRSlGgVSzJoFkdAqEVmf29L6HV9lChoBmgJaA9DCH+ismFNpfK/lIaUUpRoFUsyaBZHQKhFD+VC5Vh1fZQoaAZoCWgPQwjhmdAksaTXv5SGlFKUaBVLMmgWR0CoRLRhc7hfdX2UKGgGaAloD0MIlgSoqWVr5b+UhpRSlGgVSzJoFkdAqERfVCojwHV9lChoBmgJaA9DCHyYvWw7rfe/lIaUUpRoFUsyaBZHQKhGg/B3zMB1fZQoaAZoCWgPQwgw16IFaNvlv5SGlFKUaBVLMmgWR0CoRi06HTJAdX2UKGgGaAloD0MIL4UHza575b+UhpRSlGgVSzJoFkdAqEXRvHcUNHV9lChoBmgJaA9DCGBWKNL9XPG/lIaUUpRoFUsyaBZHQKhFfMQEpy91fZQoaAZoCWgPQwiAu+zXnS76v5SGlFKUaBVLMmgWR0CoR6uBczIndX2UKGgGaAloD0MIDi+ISE07+L+UhpRSlGgVSzJoFkdAqEdVDSgGr3V9lChoBmgJaA9DCJxu2SH+Ifi/lIaUUpRoFUsyaBZHQKhG+YjSofl1fZQoaAZoCWgPQwg2yY/4FWv3v5SGlFKUaBVLMmgWR0CoRqSGJvYOdX2UKGgGaAloD0MIv7oqUIuB9b+UhpRSlGgVSzJoFkdAqEjIKtxMnXV9lChoBmgJaA9DCAiOy7ipgei/lIaUUpRoFUsyaBZHQKhIcZccENh1fZQoaAZoCWgPQwhi2jf3Vw/tv5SGlFKUaBVLMmgWR0CoSBYpDu0DdX2UKGgGaAloD0MIGhU42QZu57+UhpRSlGgVSzJoFkdAqEfBU70WdnV9lChoBmgJaA9DCPJgi90+K/a/lIaUUpRoFUsyaBZHQKhJ7/9YOlR1fZQoaAZoCWgPQwhDWI0lrA3yv5SGlFKUaBVLMmgWR0CoSZlXzUZvdX2UKGgGaAloD0MIyGEwf4XM5L+UhpRSlGgVSzJoFkdAqEk9zCDVY3V9lChoBmgJaA9DCE5GlWHcDeK/lIaUUpRoFUsyaBZHQKhI6KfnOjZ1fZQoaAZoCWgPQwh81F+vsGDiv5SGlFKUaBVLMmgWR0CoSxF9jPOZdX2UKGgGaAloD0MIk4/dBUoK67+UhpRSlGgVSzJoFkdAqEq62WpqAXV9lChoBmgJaA9DCCKOdXEbjeK/lIaUUpRoFUsyaBZHQKhKX0ihWYF1fZQoaAZoCWgPQwjElh5N9STzv5SGlFKUaBVLMmgWR0CoSgoxgy/LdX2UKGgGaAloD0MIob5lTpfF5b+UhpRSlGgVSzJoFkdAqEw1NWU8m3V9lChoBmgJaA9DCK3D0VW6O+W/lIaUUpRoFUsyaBZHQKhL3qu8sc11fZQoaAZoCWgPQwhgcw6eCc3nv5SGlFKUaBVLMmgWR0CoS4M10knkdX2UKGgGaAloD0MImgewyK8f6b+UhpRSlGgVSzJoFkdAqEsuNT987nV9lChoBmgJaA9DCP0QGyycpOW/lIaUUpRoFUsyaBZHQKhNV0I1LrZ1fZQoaAZoCWgPQwg/pyA/G7n3v5SGlFKUaBVLMmgWR0CoTQDUExIrdX2UKGgGaAloD0MIt7OvPEhP37+UhpRSlGgVSzJoFkdAqEylcUuct3V9lChoBmgJaA9DCM3km21uzPC/lIaUUpRoFUsyaBZHQKhMUJQcghd1fZQoaAZoCWgPQwjgu80bJ4Xzv5SGlFKUaBVLMmgWR0CoTndLHuJDdX2UKGgGaAloD0MI0GG+vAC7+L+UhpRSlGgVSzJoFkdAqE4gjD8+A3V9lChoBmgJaA9DCENxx5v8Fuq/lIaUUpRoFUsyaBZHQKhNxSMtK7J1fZQoaAZoCWgPQwg2zNB4Isjxv5SGlFKUaBVLMmgWR0CoTXA0TDfndX2UKGgGaAloD0MInYTSF0LO8r+UhpRSlGgVSzJoFkdAqE+tSuQp4XV9lChoBmgJaA9DCJsAw/Ln2/C/lIaUUpRoFUsyaBZHQKhPV48lolF1fZQoaAZoCWgPQwhF9kGWBVP1v5SGlFKUaBVLMmgWR0CoTvxWtEG8dX2UKGgGaAloD0MIg09z8iLT+r+UhpRSlGgVSzJoFkdAqE6nbdrO7nV9lChoBmgJaA9DCOz2WWWmNOe/lIaUUpRoFUsyaBZHQKhQxGNJe3R1fZQoaAZoCWgPQwhrf2d79Abqv5SGlFKUaBVLMmgWR0CoUG3NcGC7dX2UKGgGaAloD0MINZvHYTD/9r+UhpRSlGgVSzJoFkdAqFASYNRWLnV9lChoBmgJaA9DCLaA0Hr48vO/lIaUUpRoFUsyaBZHQKhPvUipvP11fZQoaAZoCWgPQwiLM4Y5QRvov5SGlFKUaBVLMmgWR0CoUeRYaHbidX2UKGgGaAloD0MIDkxuFFlr4L+UhpRSlGgVSzJoFkdAqFGNxMnJDHV9lChoBmgJaA9DCHpwd9ZuO+q/lIaUUpRoFUsyaBZHQKhRMi5/b0x1fZQoaAZoCWgPQwgMzuDvFzPhv5SGlFKUaBVLMmgWR0CoUN0wJw85dX2UKGgGaAloD0MIdLaA0Hp487+UhpRSlGgVSzJoFkdAqFML7yhBaHV9lChoBmgJaA9DCIdQpWYPNOO/lIaUUpRoFUsyaBZHQKhStVJ+UhV1fZQoaAZoCWgPQwimZDkJpa/zv5SGlFKUaBVLMmgWR0CoUlrtmcvvdX2UKGgGaAloD0MIzAcEOpM24r+UhpRSlGgVSzJoFkdAqFIGdoWYW3V9lChoBmgJaA9DCD4EVaNXQ/K/lIaUUpRoFUsyaBZHQKhUWcUdq+J1fZQoaAZoCWgPQwikbJG0G33wv5SGlFKUaBVLMmgWR0CoVAOyVv/BdX2UKGgGaAloD0MI3ZTyWgld5L+UhpRSlGgVSzJoFkdAqFOpRIjGDXV9lChoBmgJaA9DCL2KjA5IQuy/lIaUUpRoFUsyaBZHQKhTVUuL7411fZQoaAZoCWgPQwg3GVWGcbfmv5SGlFKUaBVLMmgWR0CoVjXb212JdX2UKGgGaAloD0MI2q1lMhzP77+UhpRSlGgVSzJoFkdAqFXgZIg/1XV9lChoBmgJaA9DCDpbQGg9fOW/lIaUUpRoFUsyaBZHQKhVhdrwe/51fZQoaAZoCWgPQwidZoF2hxTjv5SGlFKUaBVLMmgWR0CoVTGWUr08dX2UKGgGaAloD0MIZAeVuI7x87+UhpRSlGgVSzJoFkdAqFgSGxlg+nV9lChoBmgJaA9DCEjBU8iVeuO/lIaUUpRoFUsyaBZHQKhXvFjNILB1fZQoaAZoCWgPQwhxrIvbaIDvv5SGlFKUaBVLMmgWR0CoV2G8dxQ0dX2UKGgGaAloD0MIxAYLJ2n+6L+UhpRSlGgVSzJoFkdAqFcNq8DjinV9lChoBmgJaA9DCNe9FYkJ6u2/lIaUUpRoFUsyaBZHQKhaAH9m6Gx1fZQoaAZoCWgPQwhCrz+Jz13zv5SGlFKUaBVLMmgWR0CoWasTWXkYdX2UKGgGaAloD0MIQfD49q5B/L+UhpRSlGgVSzJoFkdAqFlQp6QeWHV9lChoBmgJaA9DCPhQoiWPZ/e/lIaUUpRoFUsyaBZHQKhY/NO/L1V1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:065076da9a5b17c8292a007bf7e651847a30f75b4c03300d1c584cfa7bd0c8ee
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a15f3957b1880e15b0ce0a901926b5ddcc73a9f2e3ffe96c4eb38cc09f5bf426
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe9eda2f6d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe9eda34740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683903579597408460, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoKvFPv/TAL3V/gk/oKvFPv/TAL3V/gk/oKvFPv/TAL3V/gk/oKvFPv/TAL3V/gk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAKxjOv6LI1j9tx1K/PDymPnVvpb72WXS+FANzvZczwD9v54U/r0wJv9scoT/NUZC/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgq8U+/9MAvdX+CT/etWk8RCfkOnqXFTygq8U+/9MAvdX+CT/etWk8RCfkOnqXFTygq8U+/9MAvdX+CT/etWk8RCfkOnqXFTygq8U+/9MAvdX+CT/etWk8RCfkOnqXFTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38607502 -0.03145218 0.5390447 ]\n [ 0.38607502 -0.03145218 0.5390447 ]\n [ 0.38607502 -0.03145218 0.5390447 ]\n [ 0.38607502 -0.03145218 0.5390447 ]]", "desired_goal": "[[-1.6101125 1.6779978 -0.8233555 ]\n [ 0.3246783 -0.32311597 -0.23862442]\n [-0.05932911 1.5015744 1.0461253 ]\n [-0.53632635 1.2586931 -1.1274964 ]]", "observation": "[[ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]\n [ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]\n [ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]\n [ 0.38607502 -0.03145218 0.5390447 0.01426455 0.00174067 0.00913035]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUbm8vaM6hz1yVrs9MX2YvfQtor0Bhi0+IDDJveFf9b287ak9ZZEEvsVsjz0ZUE4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09215034 0.06602981 0.09147348]\n [-0.07445753 -0.07918921 0.1694565 ]\n [-0.09823632 -0.11981178 0.08297297]\n [-0.12946089 0.07003168 0.20147742]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFQK5xJEH77+UhpRSlIwBbJRLMowBdJRHQKg5aukDZDl1fZQoaAZoCWgPQwjyJyob1tTjv5SGlFKUaBVLMmgWR0CoORU5EMLGdX2UKGgGaAloD0MI0el5NxaU8r+UhpRSlGgVSzJoFkdAqDi6iqQzUXV9lChoBmgJaA9DCK4pkNlZNPO/lIaUUpRoFUsyaBZHQKg4ZklNUOx1fZQoaAZoCWgPQwipoQ3ABkTtv5SGlFKUaBVLMmgWR0CoO14zBRAKdX2UKGgGaAloD0MIjPLMy2F35r+UhpRSlGgVSzJoFkdAqDsIzLwF1XV9lChoBmgJaA9DCPEtrBvvTvK/lIaUUpRoFUsyaBZHQKg6rn5i3G51fZQoaAZoCWgPQwh+dOrKZ3nxv5SGlFKUaBVLMmgWR0CoOlrJjlPrdX2UKGgGaAloD0MIcayL22iA4r+UhpRSlGgVSzJoFkdAqD1d9Ujs2XV9lChoBmgJaA9DCG2MnfASHO2/lIaUUpRoFUsyaBZHQKg9CHdGiHt1fZQoaAZoCWgPQwh55XrbTAXkv5SGlFKUaBVLMmgWR0CoPK4WtU4rdX2UKGgGaAloD0MIPPiJA+h34L+UhpRSlGgVSzJoFkdAqDxaScLBsXV9lChoBmgJaA9DCODVcmcmmPi/lIaUUpRoFUsyaBZHQKg/mqLCN0h1fZQoaAZoCWgPQwhn0qbqHln5v5SGlFKUaBVLMmgWR0CoP0WPT5O8dX2UKGgGaAloD0MIbF9AL9x587+UhpRSlGgVSzJoFkdAqD7tB+nZTXV9lChoBmgJaA9DCJepSfCGNP6/lIaUUpRoFUsyaBZHQKg+mU8mrsB1fZQoaAZoCWgPQwjv4v24/fLxv5SGlFKUaBVLMmgWR0CoQOEvK2a2dX2UKGgGaAloD0MInbgcr0D04r+UhpRSlGgVSzJoFkdAqECKpeeFtnV9lChoBmgJaA9DCDCca5ih8ea/lIaUUpRoFUsyaBZHQKhAL0CA+ZB1fZQoaAZoCWgPQwhgIAiQoePkv5SGlFKUaBVLMmgWR0CoP9o2fkFOdX2UKGgGaAloD0MIYviImBJJ4b+UhpRSlGgVSzJoFkdAqEIMpNKywHV9lChoBmgJaA9DCIDW/PhLC/C/lIaUUpRoFUsyaBZHQKhBtg0CRwJ1fZQoaAZoCWgPQwiRmnYxzbTyv5SGlFKUaBVLMmgWR0CoQVqIBRyfdX2UKGgGaAloD0MIzse1oWKc7L+UhpRSlGgVSzJoFkdAqEEFkz41xnV9lChoBmgJaA9DCHdNSGsMOuW/lIaUUpRoFUsyaBZHQKhDLJBgNPR1fZQoaAZoCWgPQwgmUwWjkjrlv5SGlFKUaBVLMmgWR0CoQtXYUWVNdX2UKGgGaAloD0MInKVkOQmlz7+UhpRSlGgVSzJoFkdAqEJ6aoddV3V9lChoBmgJaA9DCG5qoPmcu+y/lIaUUpRoFUsyaBZHQKhCJV/c32p1fZQoaAZoCWgPQwhNgjekUQHvv5SGlFKUaBVLMmgWR0CoREMh5gPVdX2UKGgGaAloD0MI/pyC/Gxk7L+UhpRSlGgVSzJoFkdAqEPsbo8p1HV9lChoBmgJaA9DCPoMqDejpvC/lIaUUpRoFUsyaBZHQKhDkZof0Vd1fZQoaAZoCWgPQwhDOjyE8dPyv5SGlFKUaBVLMmgWR0CoQz05MlC1dX2UKGgGaAloD0MItyQH7Gry6b+UhpRSlGgVSzJoFkdAqEVmf29L6HV9lChoBmgJaA9DCH+ismFNpfK/lIaUUpRoFUsyaBZHQKhFD+VC5Vh1fZQoaAZoCWgPQwjhmdAksaTXv5SGlFKUaBVLMmgWR0CoRLRhc7hfdX2UKGgGaAloD0MIlgSoqWVr5b+UhpRSlGgVSzJoFkdAqERfVCojwHV9lChoBmgJaA9DCHyYvWw7rfe/lIaUUpRoFUsyaBZHQKhGg/B3zMB1fZQoaAZoCWgPQwgw16IFaNvlv5SGlFKUaBVLMmgWR0CoRi06HTJAdX2UKGgGaAloD0MIL4UHza575b+UhpRSlGgVSzJoFkdAqEXRvHcUNHV9lChoBmgJaA9DCGBWKNL9XPG/lIaUUpRoFUsyaBZHQKhFfMQEpy91fZQoaAZoCWgPQwiAu+zXnS76v5SGlFKUaBVLMmgWR0CoR6uBczIndX2UKGgGaAloD0MIDi+ISE07+L+UhpRSlGgVSzJoFkdAqEdVDSgGr3V9lChoBmgJaA9DCJxu2SH+Ifi/lIaUUpRoFUsyaBZHQKhG+YjSofl1fZQoaAZoCWgPQwg2yY/4FWv3v5SGlFKUaBVLMmgWR0CoRqSGJvYOdX2UKGgGaAloD0MIv7oqUIuB9b+UhpRSlGgVSzJoFkdAqEjIKtxMnXV9lChoBmgJaA9DCAiOy7ipgei/lIaUUpRoFUsyaBZHQKhIcZccENh1fZQoaAZoCWgPQwhi2jf3Vw/tv5SGlFKUaBVLMmgWR0CoSBYpDu0DdX2UKGgGaAloD0MIGhU42QZu57+UhpRSlGgVSzJoFkdAqEfBU70WdnV9lChoBmgJaA9DCPJgi90+K/a/lIaUUpRoFUsyaBZHQKhJ7/9YOlR1fZQoaAZoCWgPQwhDWI0lrA3yv5SGlFKUaBVLMmgWR0CoSZlXzUZvdX2UKGgGaAloD0MIyGEwf4XM5L+UhpRSlGgVSzJoFkdAqEk9zCDVY3V9lChoBmgJaA9DCE5GlWHcDeK/lIaUUpRoFUsyaBZHQKhI6KfnOjZ1fZQoaAZoCWgPQwh81F+vsGDiv5SGlFKUaBVLMmgWR0CoSxF9jPOZdX2UKGgGaAloD0MIk4/dBUoK67+UhpRSlGgVSzJoFkdAqEq62WpqAXV9lChoBmgJaA9DCCKOdXEbjeK/lIaUUpRoFUsyaBZHQKhKX0ihWYF1fZQoaAZoCWgPQwjElh5N9STzv5SGlFKUaBVLMmgWR0CoSgoxgy/LdX2UKGgGaAloD0MIob5lTpfF5b+UhpRSlGgVSzJoFkdAqEw1NWU8m3V9lChoBmgJaA9DCK3D0VW6O+W/lIaUUpRoFUsyaBZHQKhL3qu8sc11fZQoaAZoCWgPQwhgcw6eCc3nv5SGlFKUaBVLMmgWR0CoS4M10knkdX2UKGgGaAloD0MImgewyK8f6b+UhpRSlGgVSzJoFkdAqEsuNT987nV9lChoBmgJaA9DCP0QGyycpOW/lIaUUpRoFUsyaBZHQKhNV0I1LrZ1fZQoaAZoCWgPQwg/pyA/G7n3v5SGlFKUaBVLMmgWR0CoTQDUExIrdX2UKGgGaAloD0MIt7OvPEhP37+UhpRSlGgVSzJoFkdAqEylcUuct3V9lChoBmgJaA9DCM3km21uzPC/lIaUUpRoFUsyaBZHQKhMUJQcghd1fZQoaAZoCWgPQwjgu80bJ4Xzv5SGlFKUaBVLMmgWR0CoTndLHuJDdX2UKGgGaAloD0MI0GG+vAC7+L+UhpRSlGgVSzJoFkdAqE4gjD8+A3V9lChoBmgJaA9DCENxx5v8Fuq/lIaUUpRoFUsyaBZHQKhNxSMtK7J1fZQoaAZoCWgPQwg2zNB4Isjxv5SGlFKUaBVLMmgWR0CoTXA0TDfndX2UKGgGaAloD0MInYTSF0LO8r+UhpRSlGgVSzJoFkdAqE+tSuQp4XV9lChoBmgJaA9DCJsAw/Ln2/C/lIaUUpRoFUsyaBZHQKhPV48lolF1fZQoaAZoCWgPQwhF9kGWBVP1v5SGlFKUaBVLMmgWR0CoTvxWtEG8dX2UKGgGaAloD0MIg09z8iLT+r+UhpRSlGgVSzJoFkdAqE6nbdrO7nV9lChoBmgJaA9DCOz2WWWmNOe/lIaUUpRoFUsyaBZHQKhQxGNJe3R1fZQoaAZoCWgPQwhrf2d79Abqv5SGlFKUaBVLMmgWR0CoUG3NcGC7dX2UKGgGaAloD0MINZvHYTD/9r+UhpRSlGgVSzJoFkdAqFASYNRWLnV9lChoBmgJaA9DCLaA0Hr48vO/lIaUUpRoFUsyaBZHQKhPvUipvP11fZQoaAZoCWgPQwiLM4Y5QRvov5SGlFKUaBVLMmgWR0CoUeRYaHbidX2UKGgGaAloD0MIDkxuFFlr4L+UhpRSlGgVSzJoFkdAqFGNxMnJDHV9lChoBmgJaA9DCHpwd9ZuO+q/lIaUUpRoFUsyaBZHQKhRMi5/b0x1fZQoaAZoCWgPQwgMzuDvFzPhv5SGlFKUaBVLMmgWR0CoUN0wJw85dX2UKGgGaAloD0MIdLaA0Hp487+UhpRSlGgVSzJoFkdAqFML7yhBaHV9lChoBmgJaA9DCIdQpWYPNOO/lIaUUpRoFUsyaBZHQKhStVJ+UhV1fZQoaAZoCWgPQwimZDkJpa/zv5SGlFKUaBVLMmgWR0CoUlrtmcvvdX2UKGgGaAloD0MIzAcEOpM24r+UhpRSlGgVSzJoFkdAqFIGdoWYW3V9lChoBmgJaA9DCD4EVaNXQ/K/lIaUUpRoFUsyaBZHQKhUWcUdq+J1fZQoaAZoCWgPQwikbJG0G33wv5SGlFKUaBVLMmgWR0CoVAOyVv/BdX2UKGgGaAloD0MI3ZTyWgld5L+UhpRSlGgVSzJoFkdAqFOpRIjGDXV9lChoBmgJaA9DCL2KjA5IQuy/lIaUUpRoFUsyaBZHQKhTVUuL7411fZQoaAZoCWgPQwg3GVWGcbfmv5SGlFKUaBVLMmgWR0CoVjXb212JdX2UKGgGaAloD0MI2q1lMhzP77+UhpRSlGgVSzJoFkdAqFXgZIg/1XV9lChoBmgJaA9DCDpbQGg9fOW/lIaUUpRoFUsyaBZHQKhVhdrwe/51fZQoaAZoCWgPQwidZoF2hxTjv5SGlFKUaBVLMmgWR0CoVTGWUr08dX2UKGgGaAloD0MIZAeVuI7x87+UhpRSlGgVSzJoFkdAqFgSGxlg+nV9lChoBmgJaA9DCEjBU8iVeuO/lIaUUpRoFUsyaBZHQKhXvFjNILB1fZQoaAZoCWgPQwhxrIvbaIDvv5SGlFKUaBVLMmgWR0CoV2G8dxQ0dX2UKGgGaAloD0MIxAYLJ2n+6L+UhpRSlGgVSzJoFkdAqFcNq8DjinV9lChoBmgJaA9DCNe9FYkJ6u2/lIaUUpRoFUsyaBZHQKhaAH9m6Gx1fZQoaAZoCWgPQwhCrz+Jz13zv5SGlFKUaBVLMmgWR0CoWasTWXkYdX2UKGgGaAloD0MIQfD49q5B/L+UhpRSlGgVSzJoFkdAqFlQp6QeWHV9lChoBmgJaA9DCPhQoiWPZ/e/lIaUUpRoFUsyaBZHQKhY/NO/L1V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (302 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.1818282301537693, "std_reward": 0.4326422861629331, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-12T15:52:33.906778"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55a3a472f6864dc195de3506b4aeb956063b3996d4dd6160107ab69486a65b64
3
+ size 2387