|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchvision |
|
from scipy import linalg |
|
from torch.nn.functional import adaptive_avg_pool2d |
|
|
|
try: |
|
from torchvision.models.utils import load_state_dict_from_url |
|
except ImportError: |
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url |
|
|
|
FID_WEIGHTS_URL = ( |
|
"https://github.com/mseitzer/pytorch-fid/releases/download/" |
|
+ "fid_weights/pt_inception-2015-12-05-6726825d.pth" |
|
) |
|
|
|
|
|
class InceptionV3(nn.Module): |
|
"""Pretrained InceptionV3 network returning feature maps""" |
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3 |
|
|
|
|
|
BLOCK_INDEX_BY_DIM = { |
|
64: 0, |
|
192: 1, |
|
768: 2, |
|
2048: 3, |
|
} |
|
|
|
def __init__( |
|
self, |
|
output_blocks=[DEFAULT_BLOCK_INDEX], |
|
resize_input=True, |
|
normalize_input=True, |
|
requires_grad=False, |
|
use_fid_inception=True, |
|
): |
|
"""Build pretrained InceptionV3 |
|
Parameters |
|
---------- |
|
output_blocks : list of int |
|
Indices of blocks to return features of. Possible values are: |
|
- 0: corresponds to output of first max pooling |
|
- 1: corresponds to output of second max pooling |
|
- 2: corresponds to output which is fed to aux classifier |
|
- 3: corresponds to output of final average pooling |
|
resize_input : bool |
|
If true, bilinearly resizes input to width and height 299 before |
|
feeding input to model. As the network without fully connected |
|
layers is fully convolutional, it should be able to handle inputs |
|
of arbitrary size, so resizing might not be strictly needed |
|
normalize_input : bool |
|
If true, scales the input from range (0, 1) to the range the |
|
pretrained Inception network expects, namely (-1, 1) |
|
requires_grad : bool |
|
If true, parameters of the model require gradients. Possibly useful |
|
for finetuning the network |
|
use_fid_inception : bool |
|
If true, uses the pretrained Inception model used in Tensorflow's |
|
FID implementation. If false, uses the pretrained Inception model |
|
available in torchvision. The FID Inception model has different |
|
weights and a slightly different structure from torchvision's |
|
Inception model. If you want to compute FID scores, you are |
|
strongly advised to set this parameter to true to get comparable |
|
results. |
|
""" |
|
super(InceptionV3, self).__init__() |
|
|
|
self.resize_input = resize_input |
|
self.normalize_input = normalize_input |
|
self.output_blocks = sorted(output_blocks) |
|
self.last_needed_block = max(output_blocks) |
|
|
|
assert self.last_needed_block <= 3, "Last possible output block index is 3" |
|
|
|
self.blocks = nn.ModuleList() |
|
|
|
if use_fid_inception: |
|
inception = fid_inception_v3() |
|
else: |
|
inception = _inception_v3(pretrained=True) |
|
|
|
|
|
block0 = [ |
|
inception.Conv2d_1a_3x3, |
|
inception.Conv2d_2a_3x3, |
|
inception.Conv2d_2b_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
] |
|
self.blocks.append(nn.Sequential(*block0)) |
|
|
|
|
|
if self.last_needed_block >= 1: |
|
block1 = [ |
|
inception.Conv2d_3b_1x1, |
|
inception.Conv2d_4a_3x3, |
|
nn.MaxPool2d(kernel_size=3, stride=2), |
|
] |
|
self.blocks.append(nn.Sequential(*block1)) |
|
|
|
|
|
if self.last_needed_block >= 2: |
|
block2 = [ |
|
inception.Mixed_5b, |
|
inception.Mixed_5c, |
|
inception.Mixed_5d, |
|
inception.Mixed_6a, |
|
inception.Mixed_6b, |
|
inception.Mixed_6c, |
|
inception.Mixed_6d, |
|
inception.Mixed_6e, |
|
] |
|
self.blocks.append(nn.Sequential(*block2)) |
|
|
|
|
|
if self.last_needed_block >= 3: |
|
block3 = [ |
|
inception.Mixed_7a, |
|
inception.Mixed_7b, |
|
inception.Mixed_7c, |
|
nn.AdaptiveAvgPool2d(output_size=(1, 1)), |
|
] |
|
self.blocks.append(nn.Sequential(*block3)) |
|
|
|
for param in self.parameters(): |
|
param.requires_grad = requires_grad |
|
|
|
def forward(self, inp): |
|
"""Get Inception feature maps |
|
Parameters |
|
---------- |
|
inp : torch.autograd.Variable |
|
Input tensor of shape Bx3xHxW. Values are expected to be in |
|
range (0, 1) |
|
Returns |
|
------- |
|
List of torch.autograd.Variable, corresponding to the selected output |
|
block, sorted ascending by index |
|
""" |
|
outp = [] |
|
x = inp |
|
|
|
if self.resize_input: |
|
x = F.interpolate(x, size=(299, 299), mode="bilinear", align_corners=False) |
|
|
|
if self.normalize_input: |
|
x = 2 * x - 1 |
|
|
|
for idx, block in enumerate(self.blocks): |
|
x = block(x) |
|
if idx in self.output_blocks: |
|
outp.append(x) |
|
|
|
if idx == self.last_needed_block: |
|
break |
|
|
|
return outp |
|
|
|
|
|
def _inception_v3(*args, **kwargs): |
|
"""Wraps `torchvision.models.inception_v3` |
|
Skips default weight initialization if supported by torchvision version. |
|
See https://github.com/mseitzer/pytorch-fid/issues/28. |
|
""" |
|
try: |
|
version = tuple(map(int, torchvision.__version__.split(".")[:2])) |
|
except ValueError: |
|
|
|
version = (0,) |
|
|
|
if version >= (0, 6): |
|
kwargs["init_weights"] = False |
|
|
|
return torchvision.models.inception_v3(*args, **kwargs) |
|
|
|
|
|
def fid_inception_v3(): |
|
"""Build pretrained Inception model for FID computation |
|
The Inception model for FID computation uses a different set of weights |
|
and has a slightly different structure than torchvision's Inception. |
|
This method first constructs torchvision's Inception and then patches the |
|
necessary parts that are different in the FID Inception model. |
|
""" |
|
inception = _inception_v3(num_classes=1008, aux_logits=False, pretrained=False) |
|
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) |
|
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) |
|
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) |
|
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) |
|
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) |
|
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) |
|
inception.Mixed_7b = FIDInceptionE_1(1280) |
|
inception.Mixed_7c = FIDInceptionE_2(2048) |
|
|
|
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) |
|
inception.load_state_dict(state_dict) |
|
return inception |
|
|
|
|
|
class FIDInceptionA(torchvision.models.inception.InceptionA): |
|
"""InceptionA block patched for FID computation""" |
|
|
|
def __init__(self, in_channels, pool_features): |
|
super(FIDInceptionA, self).__init__(in_channels, pool_features) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch5x5 = self.branch5x5_1(x) |
|
branch5x5 = self.branch5x5_2(branch5x5) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d( |
|
x, kernel_size=3, stride=1, padding=1, count_include_pad=False |
|
) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionC(torchvision.models.inception.InceptionC): |
|
"""InceptionC block patched for FID computation""" |
|
|
|
def __init__(self, in_channels, channels_7x7): |
|
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch7x7 = self.branch7x7_1(x) |
|
branch7x7 = self.branch7x7_2(branch7x7) |
|
branch7x7 = self.branch7x7_3(branch7x7) |
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x) |
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) |
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d( |
|
x, kernel_size=3, stride=1, padding=1, count_include_pad=False |
|
) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_1(torchvision.models.inception.InceptionE): |
|
"""First InceptionE block patched for FID computation""" |
|
|
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_1, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d( |
|
x, kernel_size=3, stride=1, padding=1, count_include_pad=False |
|
) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
class FIDInceptionE_2(torchvision.models.inception.InceptionE): |
|
"""Second InceptionE block patched for FID computation""" |
|
|
|
def __init__(self, in_channels): |
|
super(FIDInceptionE_2, self).__init__(in_channels) |
|
|
|
def forward(self, x): |
|
branch1x1 = self.branch1x1(x) |
|
|
|
branch3x3 = self.branch3x3_1(x) |
|
branch3x3 = [ |
|
self.branch3x3_2a(branch3x3), |
|
self.branch3x3_2b(branch3x3), |
|
] |
|
branch3x3 = torch.cat(branch3x3, 1) |
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x) |
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) |
|
branch3x3dbl = [ |
|
self.branch3x3dbl_3a(branch3x3dbl), |
|
self.branch3x3dbl_3b(branch3x3dbl), |
|
] |
|
branch3x3dbl = torch.cat(branch3x3dbl, 1) |
|
|
|
|
|
|
|
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) |
|
branch_pool = self.branch_pool(branch_pool) |
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] |
|
return torch.cat(outputs, 1) |
|
|
|
|
|
def compute_val_fid(trainer, verbose=0): |
|
""" |
|
Compute the fid score between the n=opts.train.fid.n_images real images |
|
from the validation set (domain is rf) and n fake images pained from |
|
those n validation images |
|
|
|
Args: |
|
trainer (climategan.Trainer): trainer to compute the val fid for |
|
|
|
Returns: |
|
float: FID score |
|
""" |
|
|
|
batch_size = trainer.opts.train.fid.get("batch_size", 50) |
|
dims = trainer.opts.train.fid.get("dims", 2048) |
|
|
|
|
|
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] |
|
model = InceptionV3([block_idx]).to(trainer.device) |
|
|
|
|
|
if trainer.real_val_fid_stats is None: |
|
if verbose > 0: |
|
print("Computing real_val_fid_stats for the first time") |
|
set_real_val_fid_stats(trainer, model, batch_size, dims) |
|
|
|
|
|
real_m = trainer.real_val_fid_stats["m"] |
|
real_s = trainer.real_val_fid_stats["s"] |
|
|
|
|
|
fakes = compute_fakes(trainer) |
|
if verbose > 0: |
|
print("Computing fake activation statistics") |
|
|
|
fake_m, fake_s = calculate_activation_statistics( |
|
fakes, model, batch_size=batch_size, dims=dims, device=trainer.device |
|
) |
|
|
|
return calculate_frechet_distance(real_m, real_s, fake_m, fake_s) |
|
|
|
|
|
def set_real_val_fid_stats(trainer, model, batch_size, dims): |
|
""" |
|
Sets the real_val_fid_stats attribute of the trainer with the m and |
|
s outputs of calculate_activation_statistics on the real data. |
|
|
|
This needs to be done only once since nothing changes during training here. |
|
|
|
Args: |
|
trainer (climategan.Trainer): trainer instance to compute the stats for |
|
model (InceptionV3): inception model to get the activations from |
|
batch_size (int): inception inference batch size |
|
dims (int): dimension selected in the model |
|
""" |
|
|
|
limit = trainer.opts.train.fid.n_images |
|
display_x = torch.stack( |
|
[sample["data"]["x"] for sample in trainer.display_images["val"]["rf"][:limit]] |
|
).to(trainer.device) |
|
m, s = calculate_activation_statistics( |
|
display_x, model, batch_size=batch_size, dims=dims, device=trainer.device |
|
) |
|
trainer.real_val_fid_stats = {"m": m, "s": s} |
|
|
|
|
|
def compute_fakes(trainer, verbose=0): |
|
""" |
|
Compute current fake inferences |
|
|
|
Args: |
|
trainer (climategan.Trainer): trainer instance |
|
verbose (int, optional): Print level. Defaults to 0. |
|
|
|
Returns: |
|
torch.Tensor: trainer.opts.train.fid.n_images painted images |
|
""" |
|
|
|
n = trainer.opts.train.fid.n_images |
|
bs = trainer.opts.data.loaders.batch_size |
|
|
|
display_batches = [ |
|
(sample["data"]["x"], sample["data"]["m"]) |
|
for sample in trainer.display_images["val"]["rf"][:n] |
|
] |
|
|
|
display_x = torch.stack([b[0] for b in display_batches]).to(trainer.device) |
|
display_m = torch.stack([b[0] for b in display_batches]).to(trainer.device) |
|
nbs = len(display_x) // bs + 1 |
|
|
|
fakes = [] |
|
for b in range(nbs): |
|
if verbose > 0: |
|
print("computing fakes {}/{}".format(b + 1, nbs), end="\r", flush=True) |
|
with torch.no_grad(): |
|
x = display_x[b * bs : (b + 1) * bs] |
|
m = display_m[b * bs : (b + 1) * bs] |
|
fake = trainer.G.paint(m, x) |
|
fakes.append(fake) |
|
|
|
return torch.cat(fakes, dim=0) |
|
|
|
|
|
def calculate_activation_statistics( |
|
images, model, batch_size=50, dims=2048, device="cpu" |
|
): |
|
"""Calculation of the statistics used by the FID. |
|
Params: |
|
-- images : List of images |
|
-- model : Instance of inception model |
|
-- batch_size : The images numpy array is split into batches with |
|
batch size batch_size. A reasonable batch size |
|
depends on the hardware. |
|
-- dims : Dimensionality of features returned by Inception |
|
-- device : Device to run calculations |
|
Returns: |
|
-- mu : The mean over samples of the activations of the pool_3 layer of |
|
the inception model. |
|
-- sigma : The covariance matrix of the activations of the pool_3 layer of |
|
the inception model. |
|
""" |
|
act = get_activations(images, model, batch_size, dims, device) |
|
mu = np.mean(act, axis=0) |
|
sigma = np.cov(act, rowvar=False) |
|
return mu, sigma |
|
|
|
|
|
def get_activations(images, model, batch_size=50, dims=2048, device="cpu"): |
|
"""Calculates the activations of the pool_3 layer for all images. |
|
Params: |
|
-- images : List of images |
|
-- model : Instance of inception model |
|
-- batch_size : Batch size of images for the model to process at once. |
|
Make sure that the number of samples is a multiple of |
|
the batch size, otherwise some samples are ignored. This |
|
behavior is retained to match the original FID score |
|
implementation. |
|
-- dims : Dimensionality of features returned by Inception |
|
-- device : Device to run calculations |
|
Returns: |
|
-- A numpy array of dimension (num images, dims) that contains the |
|
activations of the given tensor when feeding inception with the |
|
query tensor. |
|
""" |
|
model.eval() |
|
|
|
pred_arr = np.empty((len(images), dims)) |
|
|
|
start_idx = 0 |
|
nbs = len(images) // batch_size + 1 |
|
|
|
for b in range(nbs): |
|
batch = images[b * batch_size : (b + 1) * batch_size].to(device) |
|
if not batch.nelement(): |
|
continue |
|
|
|
with torch.no_grad(): |
|
pred = model(batch)[0] |
|
|
|
|
|
|
|
if pred.size(2) != 1 or pred.size(3) != 1: |
|
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) |
|
|
|
pred = pred.squeeze(3).squeeze(2).cpu().numpy() |
|
|
|
pred_arr[start_idx : start_idx + pred.shape[0]] = pred |
|
|
|
start_idx = start_idx + pred.shape[0] |
|
|
|
return pred_arr |
|
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): |
|
"""Numpy implementation of the Frechet Distance. |
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) |
|
and X_2 ~ N(mu_2, C_2) is |
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). |
|
Stable version by Dougal J. Sutherland. |
|
Params: |
|
-- mu1 : Numpy array containing the activations of a layer of the |
|
inception net (like returned by the function 'get_predictions') |
|
for generated samples. |
|
-- mu2 : The sample mean over activations, precalculated on an |
|
representative data set. |
|
-- sigma1: The covariance matrix over activations for generated samples. |
|
-- sigma2: The covariance matrix over activations, precalculated on an |
|
representative data set. |
|
Returns: |
|
-- : The Frechet Distance. |
|
""" |
|
|
|
mu1 = np.atleast_1d(mu1) |
|
mu2 = np.atleast_1d(mu2) |
|
|
|
sigma1 = np.atleast_2d(sigma1) |
|
sigma2 = np.atleast_2d(sigma2) |
|
|
|
assert ( |
|
mu1.shape == mu2.shape |
|
), "Training and test mean vectors have different lengths" |
|
assert ( |
|
sigma1.shape == sigma2.shape |
|
), "Training and test covariances have different dimensions" |
|
|
|
diff = mu1 - mu2 |
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) |
|
if not np.isfinite(covmean).all(): |
|
msg = ( |
|
"fid calculation produces singular product; " |
|
"adding %s to diagonal of cov estimates" |
|
) % eps |
|
print(msg) |
|
offset = np.eye(sigma1.shape[0]) * eps |
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) |
|
|
|
|
|
if np.iscomplexobj(covmean): |
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): |
|
m = np.max(np.abs(covmean.imag)) |
|
raise ValueError("Imaginary component {}".format(m)) |
|
covmean = covmean.real |
|
|
|
tr_covmean = np.trace(covmean) |
|
|
|
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean |
|
|