File size: 9,611 Bytes
448ebbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import sys
from argparse import ArgumentParser
from pathlib import Path
from comet_ml import Experiment
import numpy as np
import torch
import yaml
from PIL import Image
from skimage.color import gray2rgb
from skimage.io import imread
from skimage.transform import resize
from skimage.util import img_as_ubyte
from tqdm import tqdm
sys.path.append(str(Path(__file__).resolve().parent.parent))
import climategan
GROUND_MODEL = "/miniscratch/_groups/ccai/experiments/runs/ablation-v1/out--ground"
def uint8(array):
return array.astype(np.uint8)
def crop_and_resize(image_path, label_path):
"""
Resizes an image so that it keeps the aspect ratio and the smallest dimensions
is 640, then crops this resized image in its center so that the output is 640x640
without aspect ratio distortion
Args:
image_path (Path or str): Path to an image
label_path (Path or str): Path to the image's associated label
Returns:
tuple((np.ndarray, np.ndarray)): (new image, new label)
"""
img = imread(image_path)
lab = imread(label_path)
# if img.shape[-1] == 4:
# img = uint8(rgba2rgb(img) * 255)
# TODO: remove (debug)
if img.shape[:2] != lab.shape[:2]:
print(
"\nWARNING: shape mismatch: im -> {}, lab -> {}".format(
image_path.name, label_path.name
)
)
# breakpoint()
# resize keeping aspect ratio: smallest dim is 640
h, w = img.shape[:2]
if h < w:
size = (640, int(640 * w / h))
else:
size = (int(640 * h / w), 640)
r_img = resize(img, size, preserve_range=True, anti_aliasing=True)
r_img = uint8(r_img)
r_lab = resize(lab, size, preserve_range=True, anti_aliasing=False, order=0)
r_lab = uint8(r_lab)
# crop in the center
H, W = r_img.shape[:2]
top = (H - 640) // 2
left = (W - 640) // 2
rc_img = r_img[top : top + 640, left : left + 640, :]
rc_lab = (
r_lab[top : top + 640, left : left + 640, :]
if r_lab.ndim == 3
else r_lab[top : top + 640, left : left + 640]
)
return rc_img, rc_lab
def load_ground(ground_output_path, ref_image_path):
gop = Path(ground_output_path)
rip = Path(ref_image_path)
ground_paths = list((gop / "eval-metrics" / "pred").glob(f"{rip.stem}.jpg")) + list(
(gop / "eval-metrics" / "pred").glob(f"{rip.stem}.png")
)
if len(ground_paths) == 0:
raise ValueError(
f"Could not find a ground match in {str(gop)} for image {str(rip)}"
)
elif len(ground_paths) > 1:
raise ValueError(
f"Found more than 1 ground match in {str(gop)} for image {str(rip)}:"
+ f" {list(map(str, ground_paths))}"
)
ground_path = ground_paths[0]
_, ground = crop_and_resize(rip, ground_path)
ground = (ground > 0).astype(np.float32)
return torch.from_numpy(ground).unsqueeze(0).unsqueeze(0).cuda()
def parse_args():
parser = ArgumentParser()
parser.add_argument("-y", "--yaml", help="Path to a list of models")
parser.add_argument(
"--disable_loading",
action="store_true",
default=False,
help="Disable loading of existing inferences",
)
parser.add_argument(
"-t", "--tags", nargs="*", help="Comet.ml tags", default=[], type=str
)
parser.add_argument(
"--tasks",
nargs="*",
help="Comet.ml tags",
default=["x", "d", "s", "m", "mx", "p"],
type=str,
)
args = parser.parse_args()
print("Received args:")
print(vars(args))
return args
def load_images_and_labels(
path="/miniscratch/_groups/ccai/data/omnigan/masker-test-set",
):
p = Path(path)
ims_path = p / "imgs"
lab_path = p / "labels"
ims = sorted(climategan.utils.find_images(ims_path), key=lambda x: x.name)
labs = sorted(
climategan.utils.find_images(lab_path),
key=lambda x: x.name.replace("_labeled.", "."),
)
xs = climategan.transforms.PrepareInference()(ims)
ys = climategan.transforms.PrepareInference(is_label=True)(labs)
return xs, ys, ims, labs
def load_inferences(inf_path, im_paths):
try:
assert inf_path.exists()
assert sorted([i.stem for i in im_paths]) == sorted(
[i.stem for i in inf_path.glob("*.pt")]
)
return [torch.load(str(i)) for i in tqdm(list(inf_path.glob("*.pt")))]
except Exception as e:
print()
print(e)
print("Aborting Loading")
print()
return None
def get_or_load_inferences(
m_path, device, xs, is_ground, im_paths, ground_model, try_load=True
):
inf_path = Path(m_path) / "inferences"
if try_load:
print("Trying to load existing inferences:")
outputs = load_inferences(inf_path, im_paths)
if outputs is not None:
print("Successfully loaded existing inferences")
return outputs
trainer = climategan.trainer.Trainer.resume_from_path(
m_path if not is_ground else ground_model,
inference=True,
new_exp=None,
device=device,
)
inf_path.mkdir(exist_ok=True)
outputs = []
for i, x in enumerate(tqdm(xs)):
x = x.to(trainer.device)
if not is_ground:
out = trainer.G.decode(x=x)
else:
out = {"m": load_ground(GROUND_MODEL, im_paths[i])}
out["p"] = trainer.G.paint(out["m"] > 0.5, x)
out["x"] = x
inference = {k: v.cpu() for k, v in out.items()}
outputs.append(inference)
torch.save(inference, inf_path / f"{im_paths[i].stem}.pt")
print()
return outputs
def numpify(outputs):
nps = []
print("Numpifying...")
for o in tqdm(outputs):
x = (o["x"][0].permute(1, 2, 0).numpy() + 1) / 2
m = o["m"]
m = (m[0, 0, :, :].numpy() > 0.5).astype(np.uint8)
p = (o["p"][0].permute(1, 2, 0).numpy() + 1) / 2
data = {"m": m, "p": p, "x": x}
if "s" in o:
s = climategan.data.decode_segmap_merged_labels(o["s"], "r", False) / 255.0
data["s"] = s[0].permute(1, 2, 0).numpy()
if "d" in o:
d = climategan.tutils.normalize_tensor(o["d"]).squeeze().numpy()
data["d"] = d
nps.append({k: img_as_ubyte(v) for k, v in data.items()})
return nps
def concat_npy_for_model(data, tasks):
assert "m" in data
assert "x" in data
assert "p" in data
x = mask = depth = seg = painted = masked = None
x = data["x"]
painted = data["p"]
mask = (gray2rgb(data["m"]) * 255).astype(np.uint8)
painted = data["p"]
masked = (1 - gray2rgb(data["m"])) * x
concats = []
if "d" in data:
depth = img_as_ubyte(
gray2rgb(
resize(data["d"], data["x"].shape[:2], anti_aliasing=True, order=1)
)
)
else:
depth = np.ones_like(data["x"]) * 255
if "s" in data:
seg = img_as_ubyte(
resize(data["s"], data["x"].shape[:2], anti_aliasing=False, order=0)
)
else:
seg = np.ones_like(data["x"]) * 255
for t in tasks:
if t == "x":
concats.append(x)
if t == "m":
concats.append(mask)
elif t == "mx":
concats.append(masked)
elif t == "d":
concats.append(depth)
elif t == "s":
concats.append(seg)
elif t == "p":
concats.append(painted)
row = np.concatenate(concats, axis=1)
return row
if __name__ == "__main__":
args = parse_args()
with open(args.yaml, "r") as f:
maskers = yaml.safe_load(f)
if "models" in maskers:
maskers = maskers["models"]
load = not args.disable_loading
tags = args.tags
tasks = args.tasks
ground_model = None
for m in maskers:
if "ground" not in maskers:
ground_model = m
break
if ground_model is None:
raise ValueError("Could not find a non-ground model to get a painter")
device = torch.device("cuda:0")
torch.set_grad_enabled(False)
xs, ys, im_paths, lab_paths = load_images_and_labels()
np_outs = {}
names = []
for m_path in maskers:
opt_path = Path(m_path) / "opts.yaml"
with opt_path.open("r") as f:
opt = yaml.safe_load(f)
name = (
", ".join(
[
t
for t in sorted(opt["comet"]["tags"])
if "branch" not in t and "ablation" not in t and "trash" not in t
]
)
if "--ground" not in m_path
else "ground"
)
names.append(name)
is_ground = name == "ground"
print("#" * 100)
print("\n>>> Processing", name)
print()
outputs = get_or_load_inferences(
m_path, device, xs, is_ground, im_paths, ground_model, load
)
nps = numpify(outputs)
np_outs[name] = nps
exp = Experiment(project_name="climategan-inferences", display_summary_level=0)
exp.log_parameter("names", names)
exp.add_tags(tags)
for i in tqdm(range(len(xs))):
all_models_for_image = []
for name in names:
xpmds = concat_npy_for_model(np_outs[name][i], tasks)
all_models_for_image.append(xpmds)
full_im = np.concatenate(all_models_for_image, axis=0)
pil_im = Image.fromarray(full_im)
exp.log_image(pil_im, name=im_paths[i].stem.replace(".", "_"), step=i)
|