File size: 11,200 Bytes
448ebbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
print("Imports...", end="", flush=True)
import sys
from pathlib import Path
sys.path.append(str(Path(__file__).resolve().parent.parent))
import atexit
import logging
from argparse import ArgumentParser
from copy import deepcopy
import comet_ml
import climategan
from comet_ml.api import API
from climategan.trainer import Trainer
from climategan.utils import get_comet_rest_api_key
logging.basicConfig()
logging.getLogger().setLevel(logging.ERROR)
import traceback
print("Done.")
def set_opts(opts, str_nested_key, value):
"""
Changes an opts with nested keys:
set_opts(addict.Dict(), "a.b.c", 2) == Dict({"a":{"b": {"c": 2}}})
Args:
opts (addict.Dict): opts whose values should be changed
str_nested_key (str): nested keys joined on "."
value (any): value to set to the nested keys of opts
"""
keys = str_nested_key.split(".")
o = opts
for k in keys[:-1]:
o = o[k]
o[keys[-1]] = value
def set_conf(opts, conf):
"""
Updates opts according to a test scenario's configuration dict.
Ignores all keys starting with "__" which are used for the scenario
but outside the opts
Args:
opts (addict.Dict): trainer options
conf (dict): scenario's configuration
"""
for k, v in conf.items():
if k.startswith("__"):
continue
set_opts(opts, k, v)
class bcolors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
class Colors:
def _r(self, key, *args):
return f"{key}{' '.join(args)}{bcolors.ENDC}"
def ob(self, *args):
return self._r(bcolors.OKBLUE, *args)
def w(self, *args):
return self._r(bcolors.WARNING, *args)
def og(self, *args):
return self._r(bcolors.OKGREEN, *args)
def f(self, *args):
return self._r(bcolors.FAIL, *args)
def b(self, *args):
return self._r(bcolors.BOLD, *args)
def u(self, *args):
return self._r(bcolors.UNDERLINE, *args)
def comet_handler(exp, api):
def sub_handler():
p = Colors()
print()
print(p.b(p.w("Deleting comet experiment")))
api.delete_experiment(exp.get_key())
return sub_handler
def print_start(desc):
p = Colors()
cdesc = p.b(p.ob(desc))
title = "| " + cdesc + " |"
line = "-" * (len(desc) + 6)
print(f"{line}\n{title}\n{line}")
def print_end(desc=None, ok=None):
p = Colors()
if ok and desc is None:
desc = "Done"
cdesc = p.b(p.og(desc))
elif not ok and desc is None:
desc = "! Fail !"
cdesc = p.b(p.f(desc))
elif desc is not None:
cdesc = p.b(p.og(desc))
else:
desc = "Unknown"
cdesc = desc
title = "| " + cdesc + " |"
line = "-" * (len(desc) + 6)
print(f"{line}\n{title}\n{line}\n")
def delete_on_exit(exp):
"""
Registers a callback to delete the comet exp at program exit
Args:
exp (comet_ml.Experiment): The exp to delete
"""
rest_api_key = get_comet_rest_api_key()
api = API(api_key=rest_api_key)
atexit.register(comet_handler(exp, api))
if __name__ == "__main__":
# -----------------------------
# ----- Parse Arguments -----
# -----------------------------
parser = ArgumentParser()
parser.add_argument("--no_delete", action="store_true", default=False)
parser.add_argument("--no_end_to_end", action="store_true", default=False)
parser.add_argument("--include", "-i", nargs="+", default=[])
parser.add_argument("--exclude", "-e", nargs="+", default=[])
args = parser.parse_args()
assert not (args.include and args.exclude), "Choose 1: include XOR exclude"
include = set(int(i) for i in args.include)
exclude = set(int(i) for i in args.exclude)
if include:
print("Including exclusively tests", " ".join(args.include))
if exclude:
print("Excluding tests", " ".join(args.exclude))
# --------------------------------------
# ----- Create global experiment -----
# --------------------------------------
print("Creating comet Experiment...", end="", flush=True)
global_exp = comet_ml.Experiment(
project_name="climategan-test", display_summary_level=0
)
print("Done.")
if not args.no_delete:
delete_on_exit(global_exp)
# prompt util for colors
prompt = Colors()
# -------------------------------------
# ----- Base Test Scenario Opts -----
# -------------------------------------
print("Loading opts...", end="", flush=True)
base_opts = climategan.utils.load_opts()
base_opts.data.check_samples = False
base_opts.train.fid.n_images = 5
base_opts.comet.display_size = 5
base_opts.tasks = ["m", "s", "d"]
base_opts.domains = ["r", "s"]
base_opts.data.loaders.num_workers = 4
base_opts.data.loaders.batch_size = 2
base_opts.data.max_samples = 9
base_opts.train.epochs = 1
if isinstance(base_opts.data.transforms[-1].new_size, int):
base_opts.data.transforms[-1].new_size = 256
else:
base_opts.data.transforms[-1].new_size.default = 256
print("Done.")
# --------------------------------------
# ----- Configure Test Scenarios -----
# --------------------------------------
# override any nested key in opts
# create scenario-specific variables with __key
# ALWAYS specify a __doc key to describe your scenario
test_scenarios = [
{"__use_comet": False, "__doc": "MSD no exp", "__verbose": 1}, # 0
{"__doc": "MSD with exp"}, # 1
{
"__doc": "MSD no exp upsample_featuremaps", # 2
"__use_comet": False,
"gen.d.upsample_featuremaps": True,
"gen.s.upsample_featuremaps": True,
},
{"tasks": ["p"], "domains": ["rf"], "__doc": "Painter"}, # 3
{
"__doc": "M no exp low level feats", # 4
"__use_comet": False,
"gen.m.use_low_level_feats": True,
"gen.m.use_dada": False,
"tasks": ["m"],
},
{
"__doc": "MSD no exp deeplabv2", # 5
"__use_comet": False,
"gen.encoder.architecture": "deeplabv2",
"gen.s.architecture": "deeplabv2",
},
{
"__doc": "MSDP no End-to-end", # 6
"domains": ["rf", "r", "s"],
"tasks": ["m", "s", "d", "p"],
},
{
"__doc": "MSDP inference only no exp", # 7
"__inference": True,
"__use_comet": False,
"domains": ["rf", "r", "s"],
"tasks": ["m", "s", "d", "p"],
},
{
"__doc": "MSDP with End-to-end", # 8
"__pl4m": True,
"domains": ["rf", "r", "s"],
"tasks": ["m", "s", "d", "p"],
},
{
"__doc": "Kitti pretrain", # 9
"train.epochs": 2,
"train.kitti.pretrain": True,
"train.kitti.epochs": 1,
"domains": ["kitti", "r", "s"],
"train.kitti.batch_size": 2,
},
{"__doc": "Depth Dada archi", "gen.d.architecture": "dada"}, # 10
{
"__doc": "Depth Base archi",
"gen.d.architecture": "base",
"gen.m.use_dada": False,
"gen.s.use_dada": False,
}, # 11
{
"__doc": "Depth Base Classification", # 12
"gen.d.architecture": "base",
"gen.d.classify.enable": True,
"gen.m.use_dada": False,
"gen.s.use_dada": False,
},
{
"__doc": "MSD Resnet V3+ backbone",
"gen.deeplabv3.backbone": "resnet",
}, # 13
{
"__use_comet": False,
"__doc": "MSD SPADE 12 (without x)",
"__verbose": 1,
"gen.m.use_spade": True,
"gen.m.spade.cond_nc": 12,
}, # 14
{
"__use_comet": False,
"__doc": "MSD SPADE 15 (with x)",
"__verbose": 1,
"gen.m.use_spade": True,
"gen.m.spade.cond_nc": 15,
}, # 15
{
"__use_comet": False,
"__doc": "Painter With Diff Augment",
"__verbose": 1,
"domains": ["rf"],
"tasks": ["p"],
"gen.p.diff_aug.use": True,
}, # 15
{
"__use_comet": False,
"__doc": "MSD DADA_s",
"__verbose": 1,
"gen.s.use_dada": True,
"gen.m.use_dada": False,
}, # 16
{
"__use_comet": False,
"__doc": "MSD DADA_ms",
"__verbose": 1,
"gen.s.use_dada": True,
"gen.m.use_dada": True,
}, # 17
]
n_confs = len(test_scenarios)
fails = []
successes = []
# --------------------------------
# ----- Run Test Scenarios -----
# --------------------------------
for test_idx, conf in enumerate(test_scenarios):
if test_idx in exclude or (include and test_idx not in include):
reason = (
"because it is in exclude"
if test_idx in exclude
else "because it is not in include"
)
print("Ignoring test", test_idx, reason)
continue
# copy base scenario opts
test_opts = deepcopy(base_opts)
# update with scenario configuration
set_conf(test_opts, conf)
# print scenario description
print_start(
f"[{test_idx}/{n_confs - 1}] "
+ conf.get("__doc", "WARNING: no __doc for test scenario")
)
print()
comet = conf.get("__use_comet", True)
pl4m = conf.get("__pl4m", False)
inference = conf.get("__inference", False)
verbose = conf.get("__verbose", 0)
# set (or not) experiment
test_exp = None
if comet:
test_exp = global_exp
try:
# create trainer
trainer = Trainer(
opts=test_opts,
verbose=verbose,
comet_exp=test_exp,
)
trainer.functional_test_mode()
# set (or not) painter loss for masker (= end-to-end)
if pl4m:
trainer.use_pl4m = True
# test training procedure
trainer.setup(inference=inference)
if not inference:
trainer.train()
successes.append(test_idx)
ok = True
except Exception as e:
print(e)
print(traceback.format_exc())
fails.append(test_idx)
ok = False
finally:
print_end(ok=ok)
print_end(desc=" ----- Summary ----- ")
if len(fails) == 0:
print("•• All scenarios were successful")
else:
print(f"•• {len(successes)}/{len(test_scenarios)} successful tests")
print(f"•• Failed test indices: {', '.join(map(str, fails))}")
|