File size: 20,448 Bytes
448ebbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 |
"""Data transforms for the loaders
"""
import random
import traceback
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from skimage.color import rgba2rgb
from skimage.io import imread
from torchvision import transforms as trsfs
from torchvision.transforms.functional import (
adjust_brightness,
adjust_contrast,
adjust_saturation,
)
from climategan.tutils import normalize
def interpolation(task):
if task in ["d", "m", "s"]:
return {"mode": "nearest"}
else:
return {"mode": "bilinear", "align_corners": True}
class Resize:
def __init__(self, target_size, keep_aspect_ratio=False):
"""
Resize transform. Target_size can be an int or a tuple of ints,
depending on whether both height and width should have the same
final size or not.
If keep_aspect_ratio is specified then target_size must be an int:
the smallest dimension of x will be set to target_size and the largest
dimension will be computed to the closest int keeping the original
aspect ratio. e.g.
>>> x = torch.rand(1, 3, 1200, 1800)
>>> m = torch.rand(1, 1, 600, 600)
>>> d = {"x": x, "m": m}
>>> {k: v.shape for k, v in Resize(640, True)(d).items()}
{"x": (1, 3, 640, 960), "m": (1, 1, 640, 960)}
Args:
target_size (int | tuple(int)): New size for the tensor
keep_aspect_ratio (bool, optional): Whether or not to keep aspect ratio
when resizing. Requires target_size to be an int. If keeping aspect
ratio, smallest dim will be set to target_size. Defaults to False.
"""
if isinstance(target_size, (int, tuple, list)):
if not isinstance(target_size, int) and not keep_aspect_ratio:
assert len(target_size) == 2
self.h, self.w = target_size
else:
if keep_aspect_ratio:
assert isinstance(target_size, int)
self.h = self.w = target_size
self.default_h = int(self.h)
self.default_w = int(self.w)
self.sizes = {}
elif isinstance(target_size, dict):
assert (
not keep_aspect_ratio
), "dict target_size not compatible with keep_aspect_ratio"
self.sizes = {
k: {"h": v, "w": v} for k, v in target_size.items() if k != "default"
}
self.default_h = int(target_size["default"])
self.default_w = int(target_size["default"])
self.keep_aspect_ratio = keep_aspect_ratio
def compute_new_default_size(self, tensor):
"""
compute the new size for a tensor depending on target size
and keep_aspect_rato
Args:
tensor (torch.Tensor): 4D tensor N x C x H x W.
Returns:
tuple(int): (new_height, new_width)
"""
if self.keep_aspect_ratio:
h, w = tensor.shape[-2:]
if h < w:
return (self.h, int(self.default_h * w / h))
else:
return (int(self.default_h * h / w), self.default_w)
return (self.default_h, self.default_w)
def compute_new_size_for_task(self, task):
assert (
not self.keep_aspect_ratio
), "compute_new_size_for_task is not compatible with keep aspect ratio"
if task not in self.sizes:
return (self.default_h, self.default_w)
return (self.sizes[task]["h"], self.sizes[task]["w"])
def __call__(self, data):
"""
Resize a dict of tensors to the "x" key's new_size
Args:
data (dict[str:torch.Tensor]): The data dict to transform
Returns:
dict[str: torch.Tensor]: dict with all tensors resized to the
new size of the data["x"] tensor
"""
task = tensor = new_size = None
try:
if not self.sizes:
d = {}
new_size = self.compute_new_default_size(
data["x"] if "x" in data else list(data.values())[0]
)
for task, tensor in data.items():
d[task] = F.interpolate(
tensor, size=new_size, **interpolation(task)
)
return d
d = {}
for task, tensor in data.items():
new_size = self.compute_new_size_for_task(task)
d[task] = F.interpolate(tensor, size=new_size, **interpolation(task))
return d
except Exception as e:
tb = traceback.format_exc()
print("Debug: task, shape, interpolation, h, w, new_size")
print(task)
print(tensor.shape)
print(interpolation(task))
print(self.h, self.w)
print(new_size)
print(tb)
raise Exception(e)
class RandomCrop:
def __init__(self, size, center=False):
assert isinstance(size, (int, tuple, list))
if not isinstance(size, int):
assert len(size) == 2
self.h, self.w = size
else:
self.h = self.w = size
self.h = int(self.h)
self.w = int(self.w)
self.center = center
def __call__(self, data):
H, W = (
data["x"].size()[-2:] if "x" in data else list(data.values())[0].size()[-2:]
)
if not self.center:
top = np.random.randint(0, H - self.h)
left = np.random.randint(0, W - self.w)
else:
top = (H - self.h) // 2
left = (W - self.w) // 2
return {
task: tensor[:, :, top : top + self.h, left : left + self.w]
for task, tensor in data.items()
}
class RandomHorizontalFlip:
def __init__(self, p=0.5):
# self.flip = TF.hflip
self.p = p
def __call__(self, data):
if np.random.rand() > self.p:
return data
return {task: torch.flip(tensor, [3]) for task, tensor in data.items()}
class ToTensor:
def __init__(self):
self.ImagetoTensor = trsfs.ToTensor()
self.MaptoTensor = self.ImagetoTensor
def __call__(self, data):
new_data = {}
for task, im in data.items():
if task in {"x", "a"}:
new_data[task] = self.ImagetoTensor(im)
elif task in {"m"}:
new_data[task] = self.MaptoTensor(im)
elif task == "s":
new_data[task] = torch.squeeze(torch.from_numpy(np.array(im))).to(
torch.int64
)
elif task == "d":
new_data = im
return new_data
class Normalize:
def __init__(self, opts):
if opts.data.normalization == "HRNet":
self.normImage = trsfs.Normalize(
((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
)
else:
self.normImage = trsfs.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
self.normDepth = lambda x: x
self.normMask = lambda x: x
self.normSeg = lambda x: x
self.normalize = {
"x": self.normImage,
"s": self.normSeg,
"d": self.normDepth,
"m": self.normMask,
}
def __call__(self, data):
return {
task: self.normalize.get(task, lambda x: x)(tensor.squeeze(0))
for task, tensor in data.items()
}
class RandBrightness: # Input need to be between -1 and 1
def __call__(self, data):
return {
task: rand_brightness(tensor) if task == "x" else tensor
for task, tensor in data.items()
}
class RandSaturation:
def __call__(self, data):
return {
task: rand_saturation(tensor) if task == "x" else tensor
for task, tensor in data.items()
}
class RandContrast:
def __call__(self, data):
return {
task: rand_contrast(tensor) if task == "x" else tensor
for task, tensor in data.items()
}
class BucketizeDepth:
def __init__(self, opts, domain):
self.domain = domain
if opts.gen.d.classify.enable and domain in {"s", "kitti"}:
self.buckets = torch.linspace(
*[
opts.gen.d.classify.linspace.min,
opts.gen.d.classify.linspace.max,
opts.gen.d.classify.linspace.buckets - 1,
]
)
self.transforms = {
"d": lambda tensor: torch.bucketize(
tensor, self.buckets, out_int32=True, right=True
)
}
else:
self.transforms = {}
def __call__(self, data):
return {
task: self.transforms.get(task, lambda x: x)(tensor)
for task, tensor in data.items()
}
class PrepareInference:
"""
Transform which:
- transforms a str or an array into a tensor
- resizes the image to keep the aspect ratio
- crops in the center of the resized image
- normalize to 0:1
- rescale to -1:1
"""
def __init__(self, target_size=640, half=False, is_label=False, enforce_128=True):
if enforce_128:
if target_size % 2 ** 7 != 0:
raise ValueError(
f"Received a target_size of {target_size}, which is not a "
+ "multiple of 2^7 = 128. Set enforce_128 to False to disable "
+ "this error."
)
self.resize = Resize(target_size, keep_aspect_ratio=True)
self.crop = RandomCrop((target_size, target_size), center=True)
self.half = half
self.is_label = is_label
def process(self, t):
if isinstance(t, (str, Path)):
t = imread(str(t))
if isinstance(t, np.ndarray):
if t.shape[-1] == 4:
t = rgba2rgb(t)
t = torch.from_numpy(t)
if t.ndim == 3:
t = t.permute(2, 0, 1)
if t.ndim == 3:
t = t.unsqueeze(0)
elif t.ndim == 2:
t = t.unsqueeze(0).unsqueeze(0)
if not self.is_label:
t = t.to(torch.float32)
t = normalize(t)
t = (t - 0.5) * 2
t = {"m": t} if self.is_label else {"x": t}
t = self.resize(t)
t = self.crop(t)
t = t["m"] if self.is_label else t["x"]
if self.half and not self.is_label:
t = t.half()
return t
def __call__(self, x):
"""
normalize, rescale, resize, crop in the center
x can be: dict {"task": data} list [data, ..] or data
data ^ can be a str, a Path, a numpy arrray or a Tensor
"""
if isinstance(x, dict):
return {k: self.process(v) for k, v in x.items()}
if isinstance(x, list):
return [self.process(t) for t in x]
return self.process(x)
class PrepareTest:
"""
Transform which:
- transforms a str or an array into a tensor
- resizes the image to keep the aspect ratio
- crops in the center of the resized image
- normalize to 0:1 (optional)
- rescale to -1:1 (optional)
"""
def __init__(self, target_size=640, half=False):
self.resize = Resize(target_size, keep_aspect_ratio=True)
self.crop = RandomCrop((target_size, target_size), center=True)
self.half = half
def process(self, t, normalize=False, rescale=False):
if isinstance(t, (str, Path)):
# t = img_as_float(imread(str(t)))
t = imread(str(t))
if t.shape[-1] == 4:
# t = rgba2rgb(t)
t = t[:, :, :3]
if np.ndim(t) == 2:
t = np.repeat(t[:, :, np.newaxis], 3, axis=2)
if isinstance(t, np.ndarray):
t = torch.from_numpy(t)
t = t.permute(2, 0, 1)
if len(t.shape) == 3:
t = t.unsqueeze(0)
t = t.to(torch.float32)
normalize(t) if normalize else t
(t - 0.5) * 2 if rescale else t
t = {"x": t}
t = self.resize(t)
t = self.crop(t)
t = t["x"]
if self.half:
return t.to(torch.float16)
return t
def __call__(self, x, normalize=False, rescale=False):
"""
Call process()
x can be: dict {"task": data} list [data, ..] or data
data ^ can be a str, a Path, a numpy arrray or a Tensor
"""
if isinstance(x, dict):
return {k: self.process(v, normalize, rescale) for k, v in x.items()}
if isinstance(x, list):
return [self.process(t, normalize, rescale) for t in x]
return self.process(x, normalize, rescale)
def get_transform(transform_item, mode):
"""Returns the torchivion transform function associated to a
transform_item listed in opts.data.transforms ; transform_item is
an addict.Dict
"""
if transform_item.name == "crop" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandomCrop(
(transform_item.height, transform_item.width),
center=transform_item.center == mode,
)
elif transform_item.name == "resize" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return Resize(
transform_item.new_size, transform_item.get("keep_aspect_ratio", False)
)
elif transform_item.name == "hflip" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandomHorizontalFlip(p=transform_item.p or 0.5)
elif transform_item.name == "brightness" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandBrightness()
elif transform_item.name == "saturation" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandSaturation()
elif transform_item.name == "contrast" and not (
transform_item.ignore is True or transform_item.ignore == mode
):
return RandContrast()
elif transform_item.ignore is True or transform_item.ignore == mode:
return None
raise ValueError("Unknown transform_item {}".format(transform_item))
def get_transforms(opts, mode, domain):
"""Get all the transform functions listed in opts.data.transforms
using get_transform(transform_item, mode)
"""
transforms = []
color_jittering_transforms = ["brightness", "saturation", "contrast"]
for t in opts.data.transforms:
if t.name not in color_jittering_transforms:
transforms.append(get_transform(t, mode))
if "p" not in opts.tasks and mode == "train":
for t in opts.data.transforms:
if t.name in color_jittering_transforms:
transforms.append(get_transform(t, mode))
transforms += [Normalize(opts), BucketizeDepth(opts, domain)]
transforms = [t for t in transforms if t is not None]
return transforms
# ----- Adapted functions from https://github.com/mit-han-lab/data-efficient-gans -----#
def rand_brightness(tensor, is_diff_augment=False):
if is_diff_augment:
assert len(tensor.shape) == 4
type_ = tensor.dtype
device_ = tensor.device
rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
return tensor + (rand_tens - 0.5)
else:
factor = random.uniform(0.5, 1.5)
tensor = adjust_brightness(tensor, brightness_factor=factor)
# dummy pixels to fool scaling and preserve range
tensor[:, :, 0, 0] = 1.0
tensor[:, :, -1, -1] = 0.0
return tensor
def rand_saturation(tensor, is_diff_augment=False):
if is_diff_augment:
assert len(tensor.shape) == 4
type_ = tensor.dtype
device_ = tensor.device
rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
x_mean = tensor.mean(dim=1, keepdim=True)
return (tensor - x_mean) * (rand_tens * 2) + x_mean
else:
factor = random.uniform(0.5, 1.5)
tensor = adjust_saturation(tensor, saturation_factor=factor)
# dummy pixels to fool scaling and preserve range
tensor[:, :, 0, 0] = 1.0
tensor[:, :, -1, -1] = 0.0
return tensor
def rand_contrast(tensor, is_diff_augment=False):
if is_diff_augment:
assert len(tensor.shape) == 4
type_ = tensor.dtype
device_ = tensor.device
rand_tens = torch.rand(tensor.size(0), 1, 1, 1, dtype=type_, device=device_)
x_mean = tensor.mean(dim=[1, 2, 3], keepdim=True)
return (tensor - x_mean) * (rand_tens + 0.5) + x_mean
else:
factor = random.uniform(0.5, 1.5)
tensor = adjust_contrast(tensor, contrast_factor=factor)
# dummy pixels to fool scaling and preserve range
tensor[:, :, 0, 0] = 1.0
tensor[:, :, -1, -1] = 0.0
return tensor
def rand_cutout(tensor, ratio=0.5):
assert len(tensor.shape) == 4, "For rand cutout, tensor must be 4D."
type_ = tensor.dtype
device_ = tensor.device
cutout_size = int(tensor.size(-2) * ratio + 0.5), int(tensor.size(-1) * ratio + 0.5)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(tensor.size(0), dtype=torch.long, device=device_),
torch.arange(cutout_size[0], dtype=torch.long, device=device_),
torch.arange(cutout_size[1], dtype=torch.long, device=device_),
)
size_ = [tensor.size(0), 1, 1]
offset_x = torch.randint(
0,
tensor.size(-2) + (1 - cutout_size[0] % 2),
size=size_,
device=device_,
)
offset_y = torch.randint(
0,
tensor.size(-1) + (1 - cutout_size[1] % 2),
size=size_,
device=device_,
)
grid_x = torch.clamp(
grid_x + offset_x - cutout_size[0] // 2, min=0, max=tensor.size(-2) - 1
)
grid_y = torch.clamp(
grid_y + offset_y - cutout_size[1] // 2, min=0, max=tensor.size(-1) - 1
)
mask = torch.ones(
tensor.size(0), tensor.size(2), tensor.size(3), dtype=type_, device=device_
)
mask[grid_batch, grid_x, grid_y] = 0
return tensor * mask.unsqueeze(1)
def rand_translation(tensor, ratio=0.125):
assert len(tensor.shape) == 4, "For rand translation, tensor must be 4D."
device_ = tensor.device
shift_x, shift_y = (
int(tensor.size(2) * ratio + 0.5),
int(tensor.size(3) * ratio + 0.5),
)
translation_x = torch.randint(
-shift_x, shift_x + 1, size=[tensor.size(0), 1, 1], device=device_
)
translation_y = torch.randint(
-shift_y, shift_y + 1, size=[tensor.size(0), 1, 1], device=device_
)
grid_batch, grid_x, grid_y = torch.meshgrid(
torch.arange(tensor.size(0), dtype=torch.long, device=device_),
torch.arange(tensor.size(2), dtype=torch.long, device=device_),
torch.arange(tensor.size(3), dtype=torch.long, device=device_),
)
grid_x = torch.clamp(grid_x + translation_x + 1, 0, tensor.size(2) + 1)
grid_y = torch.clamp(grid_y + translation_y + 1, 0, tensor.size(3) + 1)
x_pad = F.pad(tensor, [1, 1, 1, 1, 0, 0, 0, 0])
tensor = (
x_pad.permute(0, 2, 3, 1)
.contiguous()[grid_batch, grid_x, grid_y]
.permute(0, 3, 1, 2)
)
return tensor
class DiffTransforms:
def __init__(self, diff_aug_opts):
self.do_color_jittering = diff_aug_opts.do_color_jittering
self.do_cutout = diff_aug_opts.do_cutout
self.do_translation = diff_aug_opts.do_translation
self.cutout_ratio = diff_aug_opts.cutout_ratio
self.translation_ratio = diff_aug_opts.translation_ratio
def __call__(self, tensor):
if self.do_color_jittering:
tensor = rand_brightness(tensor, is_diff_augment=True)
tensor = rand_contrast(tensor, is_diff_augment=True)
tensor = rand_saturation(tensor, is_diff_augment=True)
if self.do_translation:
tensor = rand_translation(tensor, ratio=self.translation_ratio)
if self.do_cutout:
tensor = rand_cutout(tensor, ratio=self.cutout_ratio)
return tensor
|