File size: 6,714 Bytes
448ebbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from climategan.blocks import BaseDecoder, Conv2dBlock, InterpolateNearest2d
from climategan.utils import find_target_size
def create_depth_decoder(opts, no_init=False, verbose=0):
if opts.gen.d.architecture == "base":
decoder = BaseDepthDecoder(opts)
if "s" in opts.task:
assert opts.gen.s.use_dada is False
if "m" in opts.tasks:
assert opts.gen.m.use_dada is False
else:
decoder = DADADepthDecoder(opts)
if verbose > 0:
print(f" - Add {decoder.__class__.__name__}")
return decoder
class DADADepthDecoder(nn.Module):
"""
Depth decoder based on depth auxiliary task in DADA paper
"""
def __init__(self, opts):
super().__init__()
if (
opts.gen.encoder.architecture == "deeplabv3"
and opts.gen.deeplabv3.backbone == "mobilenet"
):
res_dim = 320
else:
res_dim = 2048
mid_dim = 512
self.do_feat_fusion = False
if opts.gen.m.use_dada or ("s" in opts.tasks and opts.gen.s.use_dada):
self.do_feat_fusion = True
self.dec4 = Conv2dBlock(
128,
res_dim,
1,
stride=1,
padding=0,
bias=True,
activation="lrelu",
norm="none",
)
self.relu = nn.ReLU(inplace=True)
self.enc4_1 = Conv2dBlock(
res_dim,
mid_dim,
1,
stride=1,
padding=0,
bias=False,
activation="lrelu",
pad_type="reflect",
norm="batch",
)
self.enc4_2 = Conv2dBlock(
mid_dim,
mid_dim,
3,
stride=1,
padding=1,
bias=False,
activation="lrelu",
pad_type="reflect",
norm="batch",
)
self.enc4_3 = Conv2dBlock(
mid_dim,
128,
1,
stride=1,
padding=0,
bias=False,
activation="lrelu",
pad_type="reflect",
norm="batch",
)
self.upsample = None
if opts.gen.d.upsample_featuremaps:
self.upsample = nn.Sequential(
*[
InterpolateNearest2d(),
Conv2dBlock(
128,
32,
3,
stride=1,
padding=1,
bias=False,
activation="lrelu",
pad_type="reflect",
norm="batch",
),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
]
)
self._target_size = find_target_size(opts, "d")
print(
" - {}: setting target size to {}".format(
self.__class__.__name__, self._target_size
)
)
def set_target_size(self, size):
"""
Set final interpolation's target size
Args:
size (int, list, tuple): target size (h, w). If int, target will be (i, i)
"""
if isinstance(size, (list, tuple)):
self._target_size = size[:2]
else:
self._target_size = (size, size)
def forward(self, z):
if isinstance(z, (list, tuple)):
z = z[0]
z4_enc = self.enc4_1(z)
z4_enc = self.enc4_2(z4_enc)
z4_enc = self.enc4_3(z4_enc)
z_depth = None
if self.do_feat_fusion:
z_depth = self.dec4(z4_enc)
if self.upsample is not None:
z4_enc = self.upsample(z4_enc)
depth = torch.mean(z4_enc, dim=1, keepdim=True) # DADA paper decoder
if depth.shape[-1] != self._target_size:
depth = F.interpolate(
depth,
size=(384, 384), # size used in MiDaS inference
mode="bicubic", # what MiDaS uses
align_corners=False,
)
depth = F.interpolate(
depth, (self._target_size, self._target_size), mode="nearest"
) # what we used in the transforms to resize input
return depth, z_depth
def __str__(self):
return "DADA Depth Decoder"
class BaseDepthDecoder(BaseDecoder):
def __init__(self, opts):
low_level_feats_dim = -1
use_v3 = opts.gen.encoder.architecture == "deeplabv3"
use_mobile_net = opts.gen.deeplabv3.backbone == "mobilenet"
use_low = opts.gen.d.use_low_level_feats
if use_v3 and use_mobile_net:
input_dim = 320
if use_low:
low_level_feats_dim = 24
elif use_v3:
input_dim = 2048
if use_low:
low_level_feats_dim = 256
else:
input_dim = 2048
n_upsample = 1 if opts.gen.d.upsample_featuremaps else 0
output_dim = (
1
if not opts.gen.d.classify.enable
else opts.gen.d.classify.linspace.buckets
)
self._target_size = find_target_size(opts, "d")
print(
" - {}: setting target size to {}".format(
self.__class__.__name__, self._target_size
)
)
super().__init__(
n_upsample=n_upsample,
n_res=opts.gen.d.n_res,
input_dim=input_dim,
proj_dim=opts.gen.d.proj_dim,
output_dim=output_dim,
norm=opts.gen.d.norm,
activ=opts.gen.d.activ,
pad_type=opts.gen.d.pad_type,
output_activ="none",
low_level_feats_dim=low_level_feats_dim,
)
def set_target_size(self, size):
"""
Set final interpolation's target size
Args:
size (int, list, tuple): target size (h, w). If int, target will be (i, i)
"""
if isinstance(size, (list, tuple)):
self._target_size = size[:2]
else:
self._target_size = (size, size)
def forward(self, z, cond=None):
if self._target_size is None:
error = "self._target_size should be set with self.set_target_size()"
error += "to interpolate depth to the target depth map's size"
raise ValueError(error)
d = super().forward(z)
preds = F.interpolate(
d, size=self._target_size, mode="bilinear", align_corners=True
)
return preds, None
|