File size: 17,571 Bytes
448ebbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
"""Data-loading functions in order to create a Dataset and DataLoaders.
Transforms for loaders are in transforms.py
"""
import json
import os
from pathlib import Path
import numpy as np
import torch
import yaml
from imageio import imread
from PIL import Image
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from climategan.transforms import get_transforms
from climategan.tutils import get_normalized_depth_t
from climategan.utils import env_to_path, is_image_file
classes_dict = {
"s": { # unity
0: [0, 0, 255, 255], # Water
1: [55, 55, 55, 255], # Ground
2: [0, 255, 255, 255], # Building
3: [255, 212, 0, 255], # Traffic items
4: [0, 255, 0, 255], # Vegetation
5: [255, 97, 0, 255], # Terrain
6: [255, 0, 0, 255], # Car
7: [60, 180, 60, 255], # Trees
8: [255, 0, 255, 255], # Person
9: [0, 0, 0, 255], # Sky
10: [255, 255, 255, 255], # Default
},
"r": { # deeplab v2
0: [0, 0, 255, 255], # Water
1: [55, 55, 55, 255], # Ground
2: [0, 255, 255, 255], # Building
3: [255, 212, 0, 255], # Traffic items
4: [0, 255, 0, 255], # Vegetation
5: [255, 97, 0, 255], # Terrain
6: [255, 0, 0, 255], # Car
7: [60, 180, 60, 255], # Trees
8: [220, 20, 60, 255], # Person
9: [8, 19, 49, 255], # Sky
10: [0, 80, 100, 255], # Default
},
"kitti": {
0: [210, 0, 200], # Terrain
1: [90, 200, 255], # Sky
2: [0, 199, 0], # Tree
3: [90, 240, 0], # Vegetation
4: [140, 140, 140], # Building
5: [100, 60, 100], # Road
6: [250, 100, 255], # GuardRail
7: [255, 255, 0], # TrafficSign
8: [200, 200, 0], # TrafficLight
9: [255, 130, 0], # Pole
10: [80, 80, 80], # Misc
11: [160, 60, 60], # Truck
12: [255, 127, 80], # Car
13: [0, 139, 139], # Van
14: [0, 0, 0], # Undefined
},
"flood": {
0: [255, 0, 0], # Cannot flood
1: [0, 0, 255], # Must flood
2: [0, 0, 0], # May flood
},
}
kitti_mapping = {
0: 5, # Terrain -> Terrain
1: 9, # Sky -> Sky
2: 7, # Tree -> Trees
3: 4, # Vegetation -> Vegetation
4: 2, # Building -> Building
5: 1, # Road -> Ground
6: 3, # GuardRail -> Traffic items
7: 3, # TrafficSign -> Traffic items
8: 3, # TrafficLight -> Traffic items
9: 3, # Pole -> Traffic items
10: 10, # Misc -> default
11: 6, # Truck -> Car
12: 6, # Car -> Car
13: 6, # Van -> Car
14: 10, # Undefined -> Default
}
def encode_exact_segmap(seg, classes_dict, default_value=14):
"""
When the mapping (rgb -> label) is known to be exact (no approximative rgb values)
maps rgb image to segmap labels
Args:
seg (np.ndarray): H x W x 3 RGB image
classes_dict (dict): Mapping {class: rgb value}
default_value (int, optional): Value for unknown label. Defaults to 14.
Returns:
np.ndarray: Segmap as labels, not RGB
"""
out = np.ones((seg.shape[0], seg.shape[1])) * default_value
for cindex, cvalue in classes_dict.items():
out[np.where((seg == cvalue).all(-1))] = cindex
return out
def merge_labels(labels, mapping, default_value=14):
"""
Maps labels from a source domain to labels of a target domain,
typically kitti -> climategan
Args:
labels (np.ndarray): input segmap labels
mapping (dict): source_label -> target_label
default_value (int, optional): Unknown label. Defaults to 14.
Returns:
np.ndarray: Adapted labels
"""
out = np.ones_like(labels) * default_value
for source, target in mapping.items():
out[labels == source] = target
return out
def process_kitti_seg(path, kitti_classes, merge_map, default=14):
"""
Processes a path to produce a 1 x 1 x H x W torch segmap
%timeit process_kitti_seg(path, classes_dict, mapping, default=14)
326 ms ± 118 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Args:
path (str | pathlib.Path): Segmap RBG path
kitti_classes (dict): Kitti map label -> rgb
merge_map (dict): map kitti_label -> climategan_label
default (int, optional): Unknown kitti label. Defaults to 14.
Returns:
torch.Tensor: 1 x 1 x H x W torch segmap
"""
seg = imread(path)
labels = encode_exact_segmap(seg, kitti_classes, default_value=default)
merged = merge_labels(labels, merge_map, default_value=default)
return torch.tensor(merged).unsqueeze(0).unsqueeze(0)
def decode_segmap_merged_labels(tensor, domain, is_target, nc=11):
"""Creates a label colormap for classes used in Unity segmentation benchmark.
Arguments:
tensor -- segmented image of size (1) x (nc) x (H) x (W)
if prediction, or size (1) x (1) x (H) x (W) if target
Returns:
RGB tensor of size (1) x (3) x (H) x (W)
#"""
if is_target: # Target is size 1 x 1 x H x W
idx = tensor.squeeze(0).squeeze(0)
else: # Prediction is size 1 x nc x H x W
idx = torch.argmax(tensor.squeeze(0), dim=0)
indexer = torch.tensor(list(classes_dict[domain].values()))[:, :3]
return indexer[idx.long()].permute(2, 0, 1).to(torch.float32).unsqueeze(0)
def decode_segmap_cityscapes_labels(image, nc=19):
"""Creates a label colormap used in CITYSCAPES segmentation benchmark.
Arguments:
image {array} -- segmented image
(array of image size containing class at each pixel)
Returns:
array of size 3*nc -- A colormap for visualizing segmentation results.
"""
colormap = np.zeros((19, 3), dtype=np.uint8)
colormap[0] = [128, 64, 128]
colormap[1] = [244, 35, 232]
colormap[2] = [70, 70, 70]
colormap[3] = [102, 102, 156]
colormap[4] = [190, 153, 153]
colormap[5] = [153, 153, 153]
colormap[6] = [250, 170, 30]
colormap[7] = [220, 220, 0]
colormap[8] = [107, 142, 35]
colormap[9] = [152, 251, 152]
colormap[10] = [70, 130, 180]
colormap[11] = [220, 20, 60]
colormap[12] = [255, 0, 0]
colormap[13] = [0, 0, 142]
colormap[14] = [0, 0, 70]
colormap[15] = [0, 60, 100]
colormap[16] = [0, 80, 100]
colormap[17] = [0, 0, 230]
colormap[18] = [119, 11, 32]
r = np.zeros_like(image).astype(np.uint8)
g = np.zeros_like(image).astype(np.uint8)
b = np.zeros_like(image).astype(np.uint8)
for col in range(nc):
idx = image == col
r[idx] = colormap[col, 0]
g[idx] = colormap[col, 1]
b[idx] = colormap[col, 2]
rgb = np.stack([r, g, b], axis=2)
return rgb
def find_closest_class(pixel, dict_classes):
"""Takes a pixel as input and finds the closest known pixel value corresponding
to a class in dict_classes
Arguments:
pixel -- tuple pixel (R,G,B,A)
Returns:
tuple pixel (R,G,B,A) corresponding to a key (a class) in dict_classes
"""
min_dist = float("inf")
closest_pixel = None
for pixel_value in dict_classes.keys():
dist = np.sqrt(np.sum(np.square(np.subtract(pixel, pixel_value))))
if dist < min_dist:
min_dist = dist
closest_pixel = pixel_value
return closest_pixel
def encode_segmap(arr, domain):
"""Change a segmentation RGBA array to a segmentation array
with each pixel being the index of the class
Arguments:
numpy array -- segmented image of size (H) x (W) x (4 RGBA values)
Returns:
numpy array of size (1) x (H) x (W) with each pixel being the index of the class
"""
new_arr = np.zeros((1, arr.shape[0], arr.shape[1]))
dict_classes = {
tuple(rgba_value): class_id
for (class_id, rgba_value) in classes_dict[domain].items()
}
for i in range(arr.shape[0]):
for j in range(arr.shape[1]):
pixel_rgba = tuple(arr[i, j, :])
if pixel_rgba in dict_classes.keys():
new_arr[0, i, j] = dict_classes[pixel_rgba]
else:
pixel_rgba_closest = find_closest_class(pixel_rgba, dict_classes)
new_arr[0, i, j] = dict_classes[pixel_rgba_closest]
return new_arr
def encode_mask_label(arr, domain):
"""Change a segmentation RGBA array to a segmentation array
with each pixel being the index of the class
Arguments:
numpy array -- segmented image of size (H) x (W) x (3 RGB values)
Returns:
numpy array of size (1) x (H) x (W) with each pixel being the index of the class
"""
diff = np.zeros((len(classes_dict[domain].keys()), arr.shape[0], arr.shape[1]))
for cindex, cvalue in classes_dict[domain].items():
diff[cindex, :, :] = np.sqrt(
np.sum(
np.square(arr - np.tile(cvalue, (arr.shape[0], arr.shape[1], 1))),
axis=2,
)
)
return np.expand_dims(np.argmin(diff, axis=0), axis=0)
def transform_segmap_image_to_tensor(path, domain):
"""
Transforms a segmentation image to a tensor of size (1) x (1) x (H) x (W)
with each pixel being the index of the class
"""
arr = np.array(Image.open(path).convert("RGBA"))
arr = encode_segmap(arr, domain)
arr = torch.from_numpy(arr).float()
arr = arr.unsqueeze(0)
return arr
def save_segmap_tensors(path_to_json, path_to_dir, domain):
"""
Loads the segmentation images mentionned in a json file, transforms them to
tensors and save the tensors in the wanted directory
Args:
path_to_json: complete path to the json file where to find the original data
path_to_dir: path to the directory where to save the tensors as tensor_name.pt
domain: domain of the images ("r" or "s")
e.g:
save_tensors(
"/network/tmp1/ccai/data/climategan/seg/train_s.json",
"/network/tmp1/ccai/data/munit_dataset/simdata/Unity11K_res640/Seg_tensors/",
"s",
)
"""
ims_list = None
if path_to_json:
path_to_json = Path(path_to_json).resolve()
with open(path_to_json, "r") as f:
ims_list = yaml.safe_load(f)
assert ims_list is not None
for im_dict in ims_list:
for task_name, path in im_dict.items():
if task_name == "s":
file_name = os.path.splitext(path)[0] # remove extension
file_name = file_name.rsplit("/", 1)[-1] # keep only the file_name
tensor = transform_segmap_image_to_tensor(path, domain)
torch.save(tensor, path_to_dir + file_name + ".pt")
def pil_image_loader(path, task):
if Path(path).suffix == ".npy":
arr = np.load(path).astype(np.uint8)
elif is_image_file(path):
# arr = imread(path).astype(np.uint8)
arr = np.array(Image.open(path).convert("RGB"))
else:
raise ValueError("Unknown data type {}".format(path))
# Convert from RGBA to RGB for images
if len(arr.shape) == 3 and arr.shape[-1] == 4:
arr = arr[:, :, 0:3]
if task == "m":
arr[arr != 0] = 1
# Make sure mask is single-channel
if len(arr.shape) >= 3:
arr = arr[:, :, 0]
# assert len(arr.shape) == 3, (path, task, arr.shape)
return Image.fromarray(arr)
def tensor_loader(path, task, domain, opts):
"""load data as tensors
Args:
path (str): path to data
task (str)
domain (str)
Returns:
[Tensor]: 1 x C x H x W
"""
if task == "s":
if domain == "kitti":
return process_kitti_seg(
path, classes_dict["kitti"], kitti_mapping, default=14
)
return torch.load(path)
elif task == "d":
if Path(path).suffix == ".npy":
arr = np.load(path)
else:
arr = imread(path) # .astype(np.uint8) /!\ kitti is np.uint16
tensor = torch.from_numpy(arr.astype(np.float32))
tensor = get_normalized_depth_t(
tensor,
domain,
normalize="d" in opts.train.pseudo.tasks,
log=opts.gen.d.classify.enable,
)
tensor = tensor.unsqueeze(0)
return tensor
elif Path(path).suffix == ".npy":
arr = np.load(path).astype(np.float32)
elif is_image_file(path):
arr = imread(path).astype(np.float32)
else:
raise ValueError("Unknown data type {}".format(path))
# Convert from RGBA to RGB for images
if len(arr.shape) == 3 and arr.shape[-1] == 4:
arr = arr[:, :, 0:3]
if task == "x":
arr -= arr.min()
arr /= arr.max()
arr = np.moveaxis(arr, 2, 0)
elif task == "s":
arr = np.moveaxis(arr, 2, 0)
elif task == "m":
if arr.max() > 127:
arr = (arr > 127).astype(arr.dtype)
# Make sure mask is single-channel
if len(arr.shape) >= 3:
arr = arr[:, :, 0]
arr = np.expand_dims(arr, 0)
return torch.from_numpy(arr).unsqueeze(0)
class OmniListDataset(Dataset):
def __init__(self, mode, domain, opts, transform=None):
self.opts = opts
self.domain = domain
self.mode = mode
self.tasks = set(opts.tasks)
self.tasks.add("x")
if "p" in self.tasks:
self.tasks.add("m")
file_list_path = Path(opts.data.files[mode][domain])
if "/" not in str(file_list_path):
file_list_path = Path(opts.data.files.base) / Path(
opts.data.files[mode][domain]
)
if file_list_path.suffix == ".json":
self.samples_paths = self.json_load(file_list_path)
elif file_list_path.suffix in {".yaml", ".yml"}:
self.samples_paths = self.yaml_load(file_list_path)
else:
raise ValueError("Unknown file list type in {}".format(file_list_path))
if opts.data.max_samples and opts.data.max_samples != -1:
assert isinstance(opts.data.max_samples, int)
self.samples_paths = self.samples_paths[: opts.data.max_samples]
self.filter_samples()
if opts.data.check_samples:
print(f"Checking samples ({mode}, {domain})")
self.check_samples()
self.file_list_path = str(file_list_path)
self.transform = transform
def filter_samples(self):
"""
Filter out data which is not required for the model's tasks
as defined in opts.tasks
"""
self.samples_paths = [
{k: v for k, v in s.items() if k in self.tasks} for s in self.samples_paths
]
def __getitem__(self, i):
"""Return an item in the dataset with fields:
{
data: transform({
domains: values
}),
paths: [{task: path}],
domain: [domain],
mode: [train|val]
}
Args:
i (int): index of item to retrieve
Returns:
dict: dataset item where tensors of data are in item["data"] which is a dict
{task: tensor}
"""
paths = self.samples_paths[i]
# always apply transforms,
# if no transform is specified, ToTensor and Normalize will be applied
item = {
"data": self.transform(
{
task: tensor_loader(
env_to_path(path),
task,
self.domain,
self.opts,
)
for task, path in paths.items()
}
),
"paths": paths,
"domain": self.domain if self.domain != "kitti" else "s",
"mode": self.mode,
}
return item
def __len__(self):
return len(self.samples_paths)
def json_load(self, file_path):
with open(file_path, "r") as f:
return json.load(f)
def yaml_load(self, file_path):
with open(file_path, "r") as f:
return yaml.safe_load(f)
def check_samples(self):
"""Checks that every file listed in samples_paths actually
exist on the file-system
"""
for s in self.samples_paths:
for k, v in s.items():
assert Path(v).exists(), f"{k} {v} does not exist"
def get_loader(mode, domain, opts):
if (
domain != "kitti"
or not opts.train.kitti.pretrain
or not opts.train.kitti.batch_size
):
batch_size = opts.data.loaders.get("batch_size", 4)
else:
batch_size = opts.train.kitti.get("batch_size", 4)
return DataLoader(
OmniListDataset(
mode,
domain,
opts,
transform=transforms.Compose(get_transforms(opts, mode, domain)),
),
batch_size=batch_size,
shuffle=True,
num_workers=opts.data.loaders.get("num_workers", 8),
pin_memory=True, # faster transfer to gpu
drop_last=True, # avoids batchnorm pbs if last batch has size 1
)
def get_all_loaders(opts):
loaders = {}
for mode in ["train", "val"]:
loaders[mode] = {}
for domain in opts.domains:
if mode in opts.data.files:
if domain in opts.data.files[mode]:
loaders[mode][domain] = get_loader(mode, domain, opts)
return loaders
|