File size: 15,502 Bytes
448ebbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 |
"""
This script evaluates the contribution of a technique from the ablation study for
improving the masker evaluation metrics. The differences in the metrics are computed
for all images of paired models, that is those which only differ in the inclusion or
not of the given technique. Then, statistical inference is performed through the
percentile bootstrap to obtain robust estimates of the differences in the metrics and
confidence intervals. The script plots the distribution of the bootrstraped estimates.
"""
print("Imports...", end="")
from argparse import ArgumentParser
import yaml
import os
import numpy as np
import pandas as pd
import seaborn as sns
from scipy.stats import trim_mean
from tqdm import tqdm
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
# -----------------------
# ----- Constants -----
# -----------------------
dict_metrics = {
"names": {
"tpr": "TPR, Recall, Sensitivity",
"tnr": "TNR, Specificity, Selectivity",
"fpr": "FPR",
"fpt": "False positives relative to image size",
"fnr": "FNR, Miss rate",
"fnt": "False negatives relative to image size",
"mpr": "May positive rate (MPR)",
"mnr": "May negative rate (MNR)",
"accuracy": "Accuracy (ignoring may)",
"error": "Error",
"f05": "F05 score",
"precision": "Precision",
"edge_coherence": "Edge coherence",
"accuracy_must_may": "Accuracy (ignoring cannot)",
},
"key_metrics": ["f05", "error", "edge_coherence"],
}
dict_techniques = {
"depth": "depth",
"segmentation": "seg",
"seg": "seg",
"dada_s": "dada_seg",
"dada_seg": "dada_seg",
"dada_segmentation": "dada_seg",
"dada_m": "dada_masker",
"dada_masker": "dada_masker",
"spade": "spade",
"pseudo": "pseudo",
"pseudo-labels": "pseudo",
"pseudo_labels": "pseudo",
}
# Model features
model_feats = [
"masker",
"seg",
"depth",
"dada_seg",
"dada_masker",
"spade",
"pseudo",
"ground",
"instagan",
]
# Colors
palette_colorblind = sns.color_palette("colorblind")
color_cat1 = palette_colorblind[0]
color_cat2 = palette_colorblind[1]
palette_lightest = [
sns.light_palette(color_cat1, n_colors=20)[3],
sns.light_palette(color_cat2, n_colors=20)[3],
]
palette_light = [
sns.light_palette(color_cat1, n_colors=3)[1],
sns.light_palette(color_cat2, n_colors=3)[1],
]
palette_medium = [color_cat1, color_cat2]
palette_dark = [
sns.dark_palette(color_cat1, n_colors=3)[1],
sns.dark_palette(color_cat2, n_colors=3)[1],
]
palette_cat1 = [
palette_lightest[0],
palette_light[0],
palette_medium[0],
palette_dark[0],
]
palette_cat2 = [
palette_lightest[1],
palette_light[1],
palette_medium[1],
palette_dark[1],
]
color_cat1_light = palette_light[0]
color_cat2_light = palette_light[1]
def parsed_args():
"""
Parse and returns command-line args
Returns:
argparse.Namespace: the parsed arguments
"""
parser = ArgumentParser()
parser.add_argument(
"--input_csv",
default="ablations_metrics_20210311.csv",
type=str,
help="CSV containing the results of the ablation study",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="Output directory",
)
parser.add_argument(
"--technique",
default=None,
type=str,
help="Keyword specifying the technique. One of: pseudo, depth, segmentation, dada_seg, dada_masker, spade",
)
parser.add_argument(
"--dpi",
default=200,
type=int,
help="DPI for the output images",
)
parser.add_argument(
"--n_bs",
default=1e6,
type=int,
help="Number of bootrstrap samples",
)
parser.add_argument(
"--alpha",
default=0.99,
type=float,
help="Confidence level",
)
parser.add_argument(
"--bs_seed",
default=17,
type=int,
help="Bootstrap random seed, for reproducibility",
)
return parser.parse_args()
def add_ci_mean(
ax, sample_measure, bs_mean, bs_std, ci, color, alpha, fontsize, invert=False
):
# Fill area between CI
dist = ax.lines[0]
dist_y = dist.get_ydata()
dist_x = dist.get_xdata()
linewidth = dist.get_linewidth()
x_idx_low = np.argmin(np.abs(dist_x - ci[0]))
x_idx_high = np.argmin(np.abs(dist_x - ci[1]))
x_ci = dist_x[x_idx_low:x_idx_high]
y_ci = dist_y[x_idx_low:x_idx_high]
ax.fill_between(x_ci, 0, y_ci, facecolor=color, alpha=alpha)
# Add vertical lines of CI
ax.vlines(
x=ci[0],
ymin=0.0,
ymax=y_ci[0],
color=color,
linewidth=linewidth,
label="ci_low",
)
ax.vlines(
x=ci[1],
ymin=0.0,
ymax=y_ci[-1],
color=color,
linewidth=linewidth,
label="ci_high",
)
# Add annotations
bbox_props = dict(boxstyle="round, pad=0.4", fc="w", ec="k", lw=2)
if invert:
ha_l = "right"
ha_u = "left"
else:
ha_l = "left"
ha_u = "right"
ax.text(
ci[0],
0.0,
s="L = {:.4f}".format(ci[0]),
ha=ha_l,
va="bottom",
fontsize=fontsize,
bbox=bbox_props,
)
ax.text(
ci[1],
0.0,
s="U = {:.4f}".format(ci[1]),
ha=ha_u,
va="bottom",
fontsize=fontsize,
bbox=bbox_props,
)
# Add vertical line of bootstrap mean
x_idx_mean = np.argmin(np.abs(dist_x - bs_mean))
ax.vlines(
x=bs_mean, ymin=0.0, ymax=dist_y[x_idx_mean], color="k", linewidth=linewidth
)
# Add annotation of bootstrap mean
bbox_props = dict(boxstyle="round, pad=0.4", fc="w", ec="k", lw=2)
ax.text(
bs_mean,
0.6 * dist_y[x_idx_mean],
s="Bootstrap mean = {:.4f}".format(bs_mean),
ha="center",
va="center",
fontsize=fontsize,
bbox=bbox_props,
)
# Add vertical line of sample_measure
x_idx_smeas = np.argmin(np.abs(dist_x - sample_measure))
ax.vlines(
x=sample_measure,
ymin=0.0,
ymax=dist_y[x_idx_smeas],
color="k",
linewidth=linewidth,
linestyles="dotted",
)
# Add SD
bbox_props = dict(boxstyle="darrow, pad=0.4", fc="w", ec="k", lw=2)
ax.text(
bs_mean,
0.4 * dist_y[x_idx_mean],
s="SD = {:.4f} = SE".format(bs_std),
ha="center",
va="center",
fontsize=fontsize,
bbox=bbox_props,
)
def add_null_pval(ax, null, color, alpha, fontsize):
# Fill area between CI
dist = ax.lines[0]
dist_y = dist.get_ydata()
dist_x = dist.get_xdata()
linewidth = dist.get_linewidth()
x_idx_null = np.argmin(np.abs(dist_x - null))
if x_idx_null >= (len(dist_x) / 2.0):
x_pval = dist_x[x_idx_null:]
y_pval = dist_y[x_idx_null:]
else:
x_pval = dist_x[:x_idx_null]
y_pval = dist_y[:x_idx_null]
ax.fill_between(x_pval, 0, y_pval, facecolor=color, alpha=alpha)
# Add vertical lines of null
dist = ax.lines[0]
linewidth = dist.get_linewidth()
y_max = ax.get_ylim()[1]
ax.vlines(
x=null,
ymin=0.0,
ymax=y_max,
color="k",
linewidth=linewidth,
linestyles="dotted",
)
# Add annotations
bbox_props = dict(boxstyle="round, pad=0.4", fc="w", ec="k", lw=2)
ax.text(
null,
0.75 * y_max,
s="Null hypothesis = {:.1f}".format(null),
ha="center",
va="center",
fontsize=fontsize,
bbox=bbox_props,
)
def plot_bootstrap_distr(
sample_measure, bs_samples, alpha, color_ci, color_pval=None, null=None
):
# Compute results from bootstrap
q_low = (1.0 - alpha) / 2.0
q_high = 1.0 - q_low
ci = np.quantile(bs_samples, [q_low, q_high])
bs_mean = np.mean(bs_samples)
bs_std = np.std(bs_samples)
if null is not None and color_pval is not None:
pval_flag = True
pval = np.min([[np.mean(bs_samples > null), np.mean(bs_samples < null)]]) * 2
else:
pval_flag = False
# Set up plot
sns.set(style="whitegrid")
fontsize = 24
font = {"family": "DejaVu Sans", "weight": "normal", "size": fontsize}
plt.rc("font", **font)
alpha_plot = 0.5
# Initialize the matplotlib figure
fig, ax = plt.subplots(figsize=(30, 12), dpi=args.dpi)
# Plot distribution of bootstrap means
sns.kdeplot(bs_samples, color="b", linewidth=5, gridsize=1000, ax=ax)
y_lim = ax.get_ylim()
# Change spines
sns.despine(left=True, bottom=True)
# Annotations
add_ci_mean(
ax,
sample_measure,
bs_mean,
bs_std,
ci,
color=color_ci,
alpha=alpha_plot,
fontsize=fontsize,
)
if pval_flag:
add_null_pval(ax, null, color=color_pval, alpha=alpha_plot, fontsize=fontsize)
# Legend
ci_patch = mpatches.Patch(
facecolor=color_ci,
edgecolor=None,
alpha=alpha_plot,
label="{:d} % confidence interval".format(int(100 * alpha)),
)
if pval_flag:
if pval == 0.0:
pval_patch = mpatches.Patch(
facecolor=color_pval,
edgecolor=None,
alpha=alpha_plot,
label="P value / 2 = {:.1f}".format(pval / 2.0),
)
elif np.around(pval / 2.0, decimals=4) > 0.0000:
pval_patch = mpatches.Patch(
facecolor=color_pval,
edgecolor=None,
alpha=alpha_plot,
label="P value / 2 = {:.4f}".format(pval / 2.0),
)
else:
pval_patch = mpatches.Patch(
facecolor=color_pval,
edgecolor=None,
alpha=alpha_plot,
label="P value / 2 < $10^{}$".format(np.ceil(np.log10(pval / 2.0))),
)
leg = ax.legend(
handles=[ci_patch, pval_patch],
ncol=1,
loc="upper right",
frameon=True,
framealpha=1.0,
title="",
fontsize=fontsize,
columnspacing=1.0,
labelspacing=0.2,
markerfirst=True,
)
else:
leg = ax.legend(
handles=[ci_patch],
ncol=1,
loc="upper right",
frameon=True,
framealpha=1.0,
title="",
fontsize=fontsize,
columnspacing=1.0,
labelspacing=0.2,
markerfirst=True,
)
plt.setp(leg.get_title(), fontsize=fontsize, horizontalalignment="left")
# Set X-label
ax.set_xlabel("Bootstrap estimates", rotation=0, fontsize=fontsize, labelpad=10.0)
# Set Y-label
ax.set_ylabel("Density", rotation=90, fontsize=fontsize, labelpad=10.0)
# Ticks
plt.setp(ax.get_xticklabels(), fontsize=0.8 * fontsize, verticalalignment="top")
plt.setp(ax.get_yticklabels(), fontsize=0.8 * fontsize)
ax.set_ylim(y_lim)
return fig, bs_mean, bs_std, ci, pval
if __name__ == "__main__":
# -----------------------------
# ----- Parse arguments -----
# -----------------------------
args = parsed_args()
print("Args:\n" + "\n".join([f" {k:20}: {v}" for k, v in vars(args).items()]))
# Determine output dir
if args.output_dir is None:
output_dir = Path(os.environ["SLURM_TMPDIR"])
else:
output_dir = Path(args.output_dir)
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=False)
# Store args
output_yml = output_dir / "{}_bootstrap.yml".format(args.technique)
with open(output_yml, "w") as f:
yaml.dump(vars(args), f)
# Determine technique
if args.technique.lower() not in dict_techniques:
raise ValueError("{} is not a valid technique".format(args.technique))
else:
technique = dict_techniques[args.technique.lower()]
# Read CSV
df = pd.read_csv(args.input_csv, index_col="model_img_idx")
# Find relevant model pairs
model_pairs = []
for mi in df.loc[df[technique]].model_feats.unique():
for mj in df.model_feats.unique():
if mj == mi:
continue
if df.loc[df.model_feats == mj, technique].unique()[0]:
continue
is_pair = True
for f in model_feats:
if f == technique:
continue
elif (
df.loc[df.model_feats == mj, f].unique()[0]
!= df.loc[df.model_feats == mi, f].unique()[0]
):
is_pair = False
break
else:
pass
if is_pair:
model_pairs.append((mi, mj))
break
print("\nModel pairs identified:\n")
for pair in model_pairs:
print("{} & {}".format(pair[0], pair[1]))
df["base"] = ["N/A"] * len(df)
for spp in model_pairs:
df.loc[df.model_feats.isin(spp), "depth_base"] = spp[1]
# Build bootstrap data
data = {m: [] for m in dict_metrics["key_metrics"]}
for m_with, m_without in model_pairs:
df_with = df.loc[df.model_feats == m_with]
df_without = df.loc[df.model_feats == m_without]
for metric in data.keys():
diff = (
df_with.sort_values(by="img_idx")[metric].values
- df_without.sort_values(by="img_idx")[metric].values
)
data[metric].extend(diff.tolist())
# Run bootstrap
measures = ["mean", "median", "20_trimmed_mean"]
bs_data = {meas: {m: np.zeros(args.n_bs) for m in data.keys()} for meas in measures}
np.random.seed(args.bs_seed)
for m, data_m in data.items():
for idx, s in enumerate(tqdm(range(args.n_bs))):
# Sample with replacement
bs_sample = np.random.choice(data_m, size=len(data_m), replace=True)
# Store mean
bs_data["mean"][m][idx] = np.mean(bs_sample)
# Store median
bs_data["median"][m][idx] = np.median(bs_sample)
# Store 20 % trimmed mean
bs_data["20_trimmed_mean"][m][idx] = trim_mean(bs_sample, 0.2)
for metric in dict_metrics["key_metrics"]:
sample_measure = trim_mean(data[metric], 0.2)
fig, bs_mean, bs_std, ci, pval = plot_bootstrap_distr(
sample_measure,
bs_data["20_trimmed_mean"][metric],
alpha=args.alpha,
color_ci=color_cat1_light,
color_pval=color_cat2_light,
null=0.0,
)
# Save figure
output_fig = output_dir / "{}_bootstrap_{}_{}.png".format(
args.technique, metric, "20_trimmed_mean"
)
fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")
# Store results
output_results = output_dir / "{}_bootstrap_{}_{}.yml".format(
args.technique, metric, "20_trimmed_mean"
)
results_dict = {
"measure": "20_trimmed_mean",
"sample_measure": float(sample_measure),
"bs_mean": float(bs_mean),
"bs_std": float(bs_std),
"ci_left": float(ci[0]),
"ci_right": float(ci[1]),
"pval": float(pval),
}
with open(output_results, "w") as f:
yaml.dump(results_dict, f)
|