ani_sd3_lora

This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3-medium-diffusers.

The main validation prompt used during training was:

a lighthouse, an1_style, bold outlines, expressive and freeform strokes, clean and simple with minimal detailing

Validation settings

  • CFG: 5.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a lighthouse, an1_style, bold outlines, expressive and freeform strokes, clean and simple with minimal detailing
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 303
  • Training steps: 10000
  • Learning rate: 0.0001
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: No
  • Xformers: Not used
  • LoRA Rank: 16
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

ani_dataset

  • Repeats: 0
  • Total number of images: 33
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-3-medium-diffusers'
adapter_id = 'vheretic/ani_sd3_lora'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "a lighthouse, an1_style, bold outlines, expressive and freeform strokes, clean and simple with minimal detailing"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
11
Inference API
Examples

Model tree for vheretic/ani_sd3_lora

Adapter
(175)
this model