--- license: openrail base_model: versae/gzip-bert tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: gzipbert_imdb_rpe results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.5 --- # gzipbert_imdb_rpe This model is a fine-tuned version of [versae/gzip-bert](https://huggingface.co/versae/gzip-bert) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.6932 - Accuracy: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6993 | 1.0 | 1563 | 0.6932 | 0.5 | | 0.6964 | 2.0 | 3126 | 0.6959 | 0.5 | | 0.6948 | 3.0 | 4689 | 0.6933 | 0.5 | | 0.6949 | 4.0 | 6252 | 0.6937 | 0.5 | | 0.6944 | 5.0 | 7815 | 0.6932 | 0.5 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3