Text Classification
Transformers
Safetensors
English
HHEMv2Config
custom_code
simonhughes22 commited on
Commit
41ca872
·
1 Parent(s): 0be3b8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -0
README.md CHANGED
@@ -32,6 +32,15 @@ This model is based on [microsoft/deberta-v3-base](https://huggingface.co/micros
32
  * [SummaC Benchmark](https://aclanthology.org/2022.tacl-1.10.pdf) (Test Split) - 0.764 Balanced Accuracy, 0.831 AUC Score
33
  * [AnyScale Ranking Test for Hallucinations](https://www.anyscale.com/blog/llama-2-is-about-as-factually-accurate-as-gpt-4-for-summaries-and-is-30x-cheaper) - 86.6 % Accuracy
34
 
 
 
 
 
 
 
 
 
 
35
  ## Usage with Sentencer Transformers (Recommended)
36
 
37
  The model can be used like this, on pairs of documents, passed as a list of list of strings (```List[List[str]]]```):
 
32
  * [SummaC Benchmark](https://aclanthology.org/2022.tacl-1.10.pdf) (Test Split) - 0.764 Balanced Accuracy, 0.831 AUC Score
33
  * [AnyScale Ranking Test for Hallucinations](https://www.anyscale.com/blog/llama-2-is-about-as-factually-accurate-as-gpt-4-for-summaries-and-is-30x-cheaper) - 86.6 % Accuracy
34
 
35
+ ## Note about using the Inference API Widget on the Right
36
+ To use the model with the widget, you need to pass both documents as a single string separated with [SEP]. For example:
37
+
38
+ * A man walks into a bar and buys a drink [SEP] A bloke swigs alcohol at a pub
39
+ * A person on a horse jumps over a broken down airplane. [SEP] A person is at a diner, ordering an omelette.
40
+ * A person on a horse jumps over a broken down airplane. [SEP] A person is outdoors, on a horse.
41
+
42
+ etc. See examples below for expected probability scores.
43
+
44
  ## Usage with Sentencer Transformers (Recommended)
45
 
46
  The model can be used like this, on pairs of documents, passed as a list of list of strings (```List[List[str]]]```):