julien-c HF staff commited on
Commit
8de6f8f
1 Parent(s): 94bab31

Migrate model card from transformers-repo

Browse files

Read announcement at /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fannouncement-all-model-cards-will-be-migrated-to-hf-co-model-repos%2F2755%3Cbr%2F%3EOriginal file history: https://github.com/huggingface/transformers/commits/master/model_cards/valhalla/distilbart-mnli-12-9/README.md

Files changed (1) hide show
  1. README.md +59 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - mnli
4
+ tags:
5
+ - distilbart
6
+ - distilbart-mnli
7
+ pipeline_tag: zero-shot-classification
8
+ ---
9
+
10
+ # DistilBart-MNLI
11
+
12
+ distilbart-mnli is the distilled version of bart-large-mnli created using the **No Teacher Distillation** technique proposed for BART summarisation by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart).
13
+
14
+ We just copy alternating layers from `bart-large-mnli` and finetune more on the same data.
15
+
16
+
17
+ | | matched acc | mismatched acc |
18
+ | ------------------------------------------------------------------------------------ | ----------- | -------------- |
19
+ | [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) (baseline, 12-12) | 89.9 | 90.01 |
20
+ | [distilbart-mnli-12-1](https://huggingface.co/valhalla/distilbart-mnli-12-1) | 87.08 | 87.5 |
21
+ | [distilbart-mnli-12-3](https://huggingface.co/valhalla/distilbart-mnli-12-3) | 88.1 | 88.19 |
22
+ | [distilbart-mnli-12-6](https://huggingface.co/valhalla/distilbart-mnli-12-6) | 89.19 | 89.01 |
23
+ | [distilbart-mnli-12-9](https://huggingface.co/valhalla/distilbart-mnli-12-9) | 89.56 | 89.52 |
24
+
25
+
26
+ This is a very simple and effective technique, as we can see the performance drop is very little.
27
+
28
+ Detailed performace trade-offs will be posted in this [sheet](https://docs.google.com/spreadsheets/d/1dQeUvAKpScLuhDV1afaPJRRAE55s2LpIzDVA5xfqxvk/edit?usp=sharing).
29
+
30
+
31
+ ## Fine-tuning
32
+ If you want to train these models yourself, clone the [distillbart-mnli repo](https://github.com/patil-suraj/distillbart-mnli) and follow the steps below
33
+
34
+ Clone and install transformers from source
35
+ ```bash
36
+ git clone https://github.com/huggingface/transformers.git
37
+ pip install -qqq -U ./transformers
38
+ ```
39
+
40
+ Download MNLI data
41
+ ```bash
42
+ python transformers/utils/download_glue_data.py --data_dir glue_data --tasks MNLI
43
+ ```
44
+
45
+ Create student model
46
+ ```bash
47
+ python create_student.py \
48
+ --teacher_model_name_or_path facebook/bart-large-mnli \
49
+ --student_encoder_layers 12 \
50
+ --student_decoder_layers 6 \
51
+ --save_path student-bart-mnli-12-6 \
52
+ ```
53
+
54
+ Start fine-tuning
55
+ ```bash
56
+ python run_glue.py args.json
57
+ ```
58
+
59
+ You can find the logs of these trained models in this [wandb project](https://wandb.ai/psuraj/distilbart-mnli).