update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -60,62 +60,42 @@ The following hyperparameters were used during training:
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
-
- num_epochs:
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.001 | 31.0 | 1085 | 0.7008 | 0.8390 |
|
100 |
-
| 0.0022 | 32.0 | 1120 | 0.6210 | 0.8632 |
|
101 |
-
| 0.0029 | 33.0 | 1155 | 0.6328 | 0.8471 |
|
102 |
-
| 0.0001 | 34.0 | 1190 | 0.5887 | 0.8551 |
|
103 |
-
| 0.0019 | 35.0 | 1225 | 0.6666 | 0.8390 |
|
104 |
-
| 0.0028 | 36.0 | 1260 | 0.6372 | 0.8571 |
|
105 |
-
| 0.0077 | 37.0 | 1295 | 0.5972 | 0.8632 |
|
106 |
-
| 0.0019 | 38.0 | 1330 | 0.5053 | 0.8753 |
|
107 |
-
| 0.0042 | 39.0 | 1365 | 0.8244 | 0.8249 |
|
108 |
-
| 0.0022 | 40.0 | 1400 | 0.7626 | 0.8410 |
|
109 |
-
| 0.0036 | 41.0 | 1435 | 0.6884 | 0.8410 |
|
110 |
-
| 0.0016 | 42.0 | 1470 | 0.6704 | 0.8410 |
|
111 |
-
| 0.0011 | 43.0 | 1505 | 0.5821 | 0.8531 |
|
112 |
-
| 0.0001 | 44.0 | 1540 | 0.5815 | 0.8571 |
|
113 |
-
| 0.0003 | 45.0 | 1575 | 0.6694 | 0.8431 |
|
114 |
-
| 0.0007 | 46.0 | 1610 | 0.6877 | 0.8431 |
|
115 |
-
| 0.0 | 47.0 | 1645 | 0.6863 | 0.8390 |
|
116 |
-
| 0.0 | 48.0 | 1680 | 0.6967 | 0.8431 |
|
117 |
-
| 0.0001 | 49.0 | 1715 | 0.6851 | 0.8410 |
|
118 |
-
| 0.0 | 50.0 | 1750 | 0.6828 | 0.8410 |
|
119 |
|
120 |
|
121 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9362186788154897
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2783
|
35 |
+
- Accuracy: 0.9362
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 30
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.5829 | 1.0 | 31 | 0.7480 | 0.7267 |
|
70 |
+
| 0.1199 | 2.0 | 62 | 0.4407 | 0.8246 |
|
71 |
+
| 0.1028 | 3.0 | 93 | 0.4477 | 0.8246 |
|
72 |
+
| 0.0533 | 4.0 | 124 | 0.4606 | 0.8292 |
|
73 |
+
| 0.0411 | 5.0 | 155 | 0.2470 | 0.9180 |
|
74 |
+
| 0.022 | 6.0 | 186 | 0.1568 | 0.9544 |
|
75 |
+
| 0.0206 | 7.0 | 217 | 0.4187 | 0.8793 |
|
76 |
+
| 0.0069 | 8.0 | 248 | 0.2498 | 0.9203 |
|
77 |
+
| 0.0053 | 9.0 | 279 | 0.2654 | 0.9226 |
|
78 |
+
| 0.0094 | 10.0 | 310 | 0.2343 | 0.9385 |
|
79 |
+
| 0.0152 | 11.0 | 341 | 0.3421 | 0.9021 |
|
80 |
+
| 0.0047 | 12.0 | 372 | 0.4494 | 0.8724 |
|
81 |
+
| 0.0128 | 13.0 | 403 | 0.5360 | 0.8679 |
|
82 |
+
| 0.0024 | 14.0 | 434 | 0.2775 | 0.9112 |
|
83 |
+
| 0.0127 | 15.0 | 465 | 0.2911 | 0.8975 |
|
84 |
+
| 0.0038 | 16.0 | 496 | 0.2337 | 0.9294 |
|
85 |
+
| 0.0001 | 17.0 | 527 | 0.2207 | 0.9408 |
|
86 |
+
| 0.0054 | 18.0 | 558 | 0.2506 | 0.9362 |
|
87 |
+
| 0.0011 | 19.0 | 589 | 0.3778 | 0.8952 |
|
88 |
+
| 0.0002 | 20.0 | 620 | 0.2316 | 0.9408 |
|
89 |
+
| 0.0003 | 21.0 | 651 | 0.2133 | 0.9431 |
|
90 |
+
| 0.0009 | 22.0 | 682 | 0.2519 | 0.9339 |
|
91 |
+
| 0.0004 | 23.0 | 713 | 0.2931 | 0.9203 |
|
92 |
+
| 0.0001 | 24.0 | 744 | 0.2847 | 0.9271 |
|
93 |
+
| 0.0003 | 25.0 | 775 | 0.2831 | 0.9317 |
|
94 |
+
| 0.0008 | 26.0 | 806 | 0.2919 | 0.9271 |
|
95 |
+
| 0.0003 | 27.0 | 837 | 0.2798 | 0.9362 |
|
96 |
+
| 0.0008 | 28.0 | 868 | 0.2857 | 0.9362 |
|
97 |
+
| 0.0008 | 29.0 | 899 | 0.2780 | 0.9362 |
|
98 |
+
| 0.0013 | 30.0 | 930 | 0.2783 | 0.9362 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
### Framework versions
|