File size: 4,522 Bytes
fdec7ed
e500285
 
 
 
 
 
 
 
 
 
 
 
 
fdec7ed
e500285
 
 
 
 
 
 
 
 
 
 
 
 
fdec7ed
e500285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- jondurbin/airoboros-2.2.1
- Open-Orca/OpenOrca
- garage-bAInd/Open-Platypus
- ehartford/samantha-data
- CollectiveCognition/chats-data-2023-09-27
- stingning/ultrachat
tags:
- code
license: apache-2.0
model-index:
- name: SpeechlessCoder
  results:
  - task:
      type: text-generation
    dataset:
      type: openai_humaneval
      name: HumanEval
    metrics:
    - name: pass@1
      type: pass@1
      value: 0.0
      verified: false
---

<p><h1> speechless-mistral-six-in-one-7b-orth-1.0 </h1></p>

# JUST for TEST!

Modifying the base model weights in the direction of the changes that occurred during fine-tuning, but only considering those changes that are orthogonal to the original weight direction. 
This approach aims to capture the essence of the fine-tuning while maintaining the original structure as much as possible.


<p><h1> speechless-mistral-six-in-one-7b </h1></p>

This model is a merge of 6 SOTA Mistral-7B based models:
- ehartford/dolphin-2.1-mistral-7b
- Open-Orca/Mistral-7B-OpenOrca
- bhenrym14/mistral-7b-platypus-fp16
- ehartford/samantha-1.2-mistral-7b
- iteknium/CollectiveCognition-v1.1-Mistral-7B
- HuggingFaceH4/zephyr-7b-alpha

[Model benchmark](https://huggingface.co/uukuguy/speechless-mistral-six-in-one-7b/discussions/1) by [sethuiyer](https://huggingface.co/sethuiyer) . Thanks a lot.
> I tested the Q6_0 version of the model against LLaMa2 70B chat and here are the results - Scoring as per ChatGPT and Bard's average. Named this model Mixtral. Questions taken from MT-Benchmark.
>
> On a scale of 0 to 100, I would rate Mixtral at 98. Here's why:
>
> - Intellect (100/100) - Mixtral has demonstrated immense intellectual abilities through its comprehensive knowledge and logical reasoning skills.
> - Creativity (98/100) - In addition to being highly intelligent, Mixtral also displays impressive creative talents through its unique, nuanced responses.
> - Adaptability (98/100) - Mixtral can converse flexibly on a wide variety of topics, adapting smoothly based on contextual cues.
> - Communication (97/100) - Mixtral communicates clearly and eloquently through written language, thoroughly answering questions.
> - Problem-Solving (98/100) - Questions are addressed comprehensively, considering multiple perspectives to arrive at well-thought solutions.
> - Personability (97/100) - Responses are warm, inviting and non-threatening due to Mixtral's kindness and thoughtfulness.
>
> Overall, a very capable model for it's size.

Code: https://github.com/uukuguy/speechless

## HumanEval

| Metric | Value |
| --- | --- |
| humaneval-python |  |

[Big Code Models Leaderboard](https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard)

CodeLlama-34B-Python: 53.29

CodeLlama-34B-Instruct: 50.79

CodeLlama-13B-Instruct: 50.6

CodeLlama-34B: 45.11

CodeLlama-13B-Python: 42.89

CodeLlama-13B: 35.07 

Mistral-7B-v0.1: 30.488

## LM-Evaluation-Harness

[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

| Metric | Value |
| --- | --- |
| ARC | 62.97 |
| HellaSwag | 84.6|
| MMLU | 63.29 |
| TruthfulQA | 57.77 |
| Winogrande | 77.51 |
| GSM8K | 18.42 |
| DROP | 9.13 |
| Average | 53.38 |

# Model Card for Mistral-7B-v0.1

The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. 
Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.

For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).

## Model Architecture

Mistral-7B-v0.1 is a transformer model, with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer

## Troubleshooting

- If you see the following error:
``
KeyError: 'mistral'
``
- Or:
``
NotImplementedError: Cannot copy out of meta tensor; no data!
``

Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.

## Notice

Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.

## The Mistral AI Team
 
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.`