Update README.md
Browse files
README.md
CHANGED
@@ -36,8 +36,7 @@ pipeline_tag: text-generation
|
|
36 |
- [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
37 |
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only)
|
38 |
- [GAIR/lima](https://huggingface.co/datasets/GAIR/lima)
|
39 |
-
|
40 |
-
> No other data was used except for the dataset mentioned above
|
41 |
|
42 |
### Prompt Template
|
43 |
```
|
@@ -89,16 +88,17 @@ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
|
89 |
- We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
90 |
We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`
|
91 |
We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463)
|
|
|
92 |
|
93 |
### Main Results
|
94 |
| Model | H4(Avg) | ARC | HellaSwag | MMLU | TruthfulQA | | MT_Bench |
|
95 |
|--------------------------------------------------------------------|----------|----------|----------|------|----------|-|-------------|
|
96 |
-
| **[Llama-2-70b-instruct-v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)**(
|
97 |
| [Llama-2-70b-instruct](https://huggingface.co/upstage/Llama-2-70b-instruct) (Ours, Open LLM Leaderboard) | 72.3 | 70.9 | 87.5 | **69.8** | 61 | | 7.24375 |
|
98 |
| [llama-65b-instruct](https://huggingface.co/upstage/llama-65b-instruct) (Ours, Open LLM Leaderboard) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 | | |
|
99 |
| Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | **69.8** | 44.9 | | |
|
100 |
| [llama-30b-instruct-2048](https://huggingface.co/upstage/llama-30b-instruct-2048) (Ours, Open LLM Leaderboard) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | |
|
101 |
-
| [llama-30b-instruct](https://huggingface.co/upstage/llama-30b-instruct) (Ours
|
102 |
| llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
|
103 |
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
|
104 |
|
|
|
36 |
- [Open-Orca/OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca)
|
37 |
- [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only)
|
38 |
- [GAIR/lima](https://huggingface.co/datasets/GAIR/lima)
|
39 |
+
- No other data was used except for the dataset mentioned above
|
|
|
40 |
|
41 |
### Prompt Template
|
42 |
```
|
|
|
88 |
- We conducted a performance evaluation based on the tasks being evaluated on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
89 |
We evaluated our model on four benchmark datasets, which include `ARC-Challenge`, `HellaSwag`, `MMLU`, and `TruthfulQA`
|
90 |
We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-evaluation-harness), specifically commit [b281b0921b636bc36ad05c0b0b0763bd6dd43463](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463)
|
91 |
+
- We used [MT-bench](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge), a set of challenging multi-turn open-ended questions, to evaluate the models
|
92 |
|
93 |
### Main Results
|
94 |
| Model | H4(Avg) | ARC | HellaSwag | MMLU | TruthfulQA | | MT_Bench |
|
95 |
|--------------------------------------------------------------------|----------|----------|----------|------|----------|-|-------------|
|
96 |
+
| **[Llama-2-70b-instruct-v2](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)**(Ours, Local Reproduction) | **72.7** | **71.6** | **87.7** | 69.7 | **61.6** | | **7.44063** |
|
97 |
| [Llama-2-70b-instruct](https://huggingface.co/upstage/Llama-2-70b-instruct) (Ours, Open LLM Leaderboard) | 72.3 | 70.9 | 87.5 | **69.8** | 61 | | 7.24375 |
|
98 |
| [llama-65b-instruct](https://huggingface.co/upstage/llama-65b-instruct) (Ours, Open LLM Leaderboard) | 69.4 | 67.6 | 86.5 | 64.9 | 58.8 | | |
|
99 |
| Llama-2-70b-hf | 67.3 | 67.3 | 87.3 | **69.8** | 44.9 | | |
|
100 |
| [llama-30b-instruct-2048](https://huggingface.co/upstage/llama-30b-instruct-2048) (Ours, Open LLM Leaderboard) | 67.0 | 64.9 | 84.9 | 61.9 | 56.3 | | |
|
101 |
+
| [llama-30b-instruct](https://huggingface.co/upstage/llama-30b-instruct) (***Ours***, ***Open LLM Leaderboard***) | 65.2 | 62.5 | 86.2 | 59.4 | 52.8 | | |
|
102 |
| llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
|
103 |
| falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
|
104 |
|