Chanjun commited on
Commit
99f955b
·
1 Parent(s): 0303f81

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -5
README.md CHANGED
@@ -51,10 +51,37 @@ pipeline_tag: text-generation
51
  {Assistant}
52
  ```
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  ## Hardware and Software
55
 
56
- * **Hardware**: We utilized an A100x8 for training our model
57
- * **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace trainer](https://huggingface.co/docs/transformers/main_classes/trainer)
58
 
59
  ## Evaluation Results
60
 
@@ -75,15 +102,13 @@ We used the [lm-evaluation-harness repository](https://github.com/EleutherAI/lm-
75
  | llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
76
  | falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
77
 
78
- ### Scripts
79
  - Prepare evaluation environments:
80
  ```
81
  # clone the repository
82
  git clone https://github.com/EleutherAI/lm-evaluation-harness.git
83
-
84
  # check out the specific commit
85
  git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
86
-
87
  # change to the repository directory
88
  cd lm-evaluation-harness
89
  ```
 
51
  {Assistant}
52
  ```
53
 
54
+ ## Usage
55
+
56
+ - Tested on A100 80GB
57
+ - Our model can handle up to 10k input tokens, thanks to the `rope_scaling` option
58
+
59
+ ```python
60
+ import torch
61
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
62
+
63
+ tokenizer = AutoTokenizer.from_pretrained("upstage/llama-30b-instruct")
64
+ model = AutoModelForCausalLM.from_pretrained(
65
+ "upstage/llama-30b-instruct",
66
+ device_map="auto",
67
+ torch_dtype=torch.float16,
68
+ load_in_8bit=True,
69
+ rope_scaling={"type": "dynamic", "factor": 2} # allows handling of longer inputs
70
+ )
71
+
72
+ prompt = "### User:\nThomas is healthy, but he has to go to the hospital. What could be the reasons?\n\n### Assistant:\n"
73
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
74
+ del inputs["token_type_ids"]
75
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
76
+
77
+ output = model.generate(**inputs, streamer=streamer, use_cache=True, max_new_tokens=float('inf'))
78
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
79
+ ```
80
+
81
  ## Hardware and Software
82
 
83
+ * **Hardware**: We utilized an A100x8 * 4 for training our model
84
+ * **Training Factors**: We fine-tuned this model using a combination of the [DeepSpeed library](https://github.com/microsoft/DeepSpeed) and the [HuggingFace Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) / [HuggingFace Accelerate](https://huggingface.co/docs/accelerate/index)
85
 
86
  ## Evaluation Results
87
 
 
102
  | llama-65b | 64.2 | 63.5 | 86.1 | 63.9 | 43.4 | | |
103
  | falcon-40b-instruct | 63.4 | 61.6 | 84.3 | 55.4 | 52.5 | | |
104
 
105
+ ### Scripts for H4 Score Reproduction
106
  - Prepare evaluation environments:
107
  ```
108
  # clone the repository
109
  git clone https://github.com/EleutherAI/lm-evaluation-harness.git
 
110
  # check out the specific commit
111
  git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463
 
112
  # change to the repository directory
113
  cd lm-evaluation-harness
114
  ```