shimmyshimmer commited on
Commit
388f3f2
·
verified ·
1 Parent(s): 3fad04f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: apache-2.0
7
+ tags:
8
+ - unsloth
9
+ - transformers
10
+ - code
11
+ - qwen
12
+ - qwen-coder
13
+ - codeqwen
14
+ ---
15
+
16
+ # Finetune Llama 3.2, Qwen2.5, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
17
+
18
+ We have a Qwen 2.5 (all model sizes) [free Google Colab Tesla T4 notebook](https://colab.research.google.com/drive/1Kose-ucXO1IBaZq5BvbwWieuubP7hxvQ?usp=sharing).
19
+ Also a [Qwen 2.5 conversational style notebook](https://colab.research.google.com/drive/1qN1CEalC70EO1wGKhNxs1go1W9So61R5?usp=sharing).
20
+
21
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
22
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
23
+
24
+ ## ✨ Finetune for Free
25
+
26
+ All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
27
+
28
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
29
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
30
+ | **Llama-3.1 8b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Ys44kVvmeZtnICzWz0xgpRnrIOjZAuxp?usp=sharing) | 2.4x faster | 58% less |
31
+ | **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/drive/1lN6hPQveB_mHSnTOYifygFcrO8C1bxq4?usp=sharing) | 2x faster | 50% less |
32
+ | **Gemma-2 9b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing) | 2.4x faster | 58% less |
33
+ | **Mistral 7b** | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing) | 2.2x faster | 62% less |
34
+ | **TinyLlama** | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing) | 3.9x faster | 74% less |
35
+ | **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
36
+
37
+ - This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
38
+ - This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
39
+ - \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
40
+
41
+ # unsloth/Qwen2.5-Coder-14B-Instruct-GGUF
42
+
43
+ ## Introduction
44
+
45
+ Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:
46
+
47
+ - Significantly improvements in **code generation**, **code reasoning** and **code fixing**. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.
48
+ - A more comprehensive foundation for real-world applications such as **Code Agents**. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.
49
+
50
+ **This repo contains the 0.5B Qwen2.5-Coder model**, which has the following features:
51
+ - Type: Causal Language Models
52
+ - Training Stage: Pretraining
53
+ - Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
54
+ - Number of Parameters: 0.49B
55
+ - Number of Paramaters (Non-Embedding): 0.36B
56
+ - Number of Layers: 24
57
+ - Number of Attention Heads (GQA): 14 for Q and 2 for KV
58
+ - Context Length: Full 32,768 tokens
59
+
60
+ **We do not recommend using base language models for conversations.** Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., or fill in the middle tasks on this model.
61
+
62
+ For more details, please refer to our [blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/), [GitHub](https://github.com/QwenLM/Qwen2.5-Coder), [Documentation](https://qwen.readthedocs.io/en/latest/), [Arxiv](https://arxiv.org/abs/2409.12186).
63
+
64
+ ## Requirements
65
+
66
+ The code of Qwen2.5-Coder has been in the latest Hugging face `transformers` and we advise you to use the latest version of `transformers`.
67
+
68
+ With `transformers<4.37.0`, you will encounter the following error:
69
+ ```
70
+ KeyError: 'qwen2'
71
+ ```
72
+
73
+
74
+ ## Evaluation & Performance
75
+
76
+ Detailed evaluation results are reported in this [📑 blog](https://qwenlm.github.io/blog/qwen2.5-coder-family/).
77
+
78
+ For requirements on GPU memory and the respective throughput, see results [here](https://qwen.readthedocs.io/en/latest/benchmark/speed_benchmark.html).
79
+
80
+ ## Citation
81
+
82
+ If you find our work helpful, feel free to give us a cite.
83
+
84
+ ```
85
+ @article{hui2024qwen2,
86
+ title={Qwen2. 5-Coder Technical Report},
87
+ author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
88
+ journal={arXiv preprint arXiv:2409.12186},
89
+ year={2024}
90
+ }
91
+ @article{qwen2,
92
+ title={Qwen2 Technical Report},
93
+ author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
94
+ journal={arXiv preprint arXiv:2407.10671},
95
+ year={2024}
96
+ }
97
+ ```