lhbonifacio commited on
Commit
44dc5b0
·
1 Parent(s): c0243c6
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -16,7 +16,7 @@ inference: false
16
  ---
17
  # PTT5-base Reranker finetuned on Portuguese MS MARCO
18
  ## Introduction
19
- ptt5-base-msmarco-pt-10k-v2 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 10k steps.
20
  Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
21
 
22
  ## Usage
@@ -24,13 +24,13 @@ Further information about the dataset or the translation method can be found on
24
 
25
  from transformers import T5Tokenizer, T5ForConditionalGeneration
26
 
27
- model_name = 'unicamp-dl/ptt5-base-msmarco-pt-10k-v2'
28
  tokenizer = T5Tokenizer.from_pretrained(model_name)
29
  model = T5ForConditionalGeneration.from_pretrained(model_name)
30
 
31
  ```
32
  # Citation
33
- If you use ptt5-base-msmarco-pt-10k-v2, please cite:
34
 
35
  @misc{bonifacio2021mmarco,
36
  title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
@@ -41,3 +41,4 @@ If you use ptt5-base-msmarco-pt-10k-v2, please cite:
41
  primaryClass={cs.CL}
42
  }
43
 
 
 
16
  ---
17
  # PTT5-base Reranker finetuned on Portuguese MS MARCO
18
  ## Introduction
19
+ ptt5-base-msmarco-pt-100k-v2 is a T5-based model pretrained in the BrWac corpus, finetuned on Portuguese translated version of MS MARCO passage dataset. In the v2 version, the Portuguese dataset was translated using Google Translate. This model was finetuned for 100k steps.
20
  Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
21
 
22
  ## Usage
 
24
 
25
  from transformers import T5Tokenizer, T5ForConditionalGeneration
26
 
27
+ model_name = 'unicamp-dl/ptt5-base-msmarco-pt-100k-v2'
28
  tokenizer = T5Tokenizer.from_pretrained(model_name)
29
  model = T5ForConditionalGeneration.from_pretrained(model_name)
30
 
31
  ```
32
  # Citation
33
+ If you use ptt5-base-msmarco-pt-100k-v2, please cite:
34
 
35
  @misc{bonifacio2021mmarco,
36
  title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset},
 
41
  primaryClass={cs.CL}
42
  }
43
 
44
+